
Seldon Deploy

smv

Oct 18, 2021

CONTENTS

1 About 1
1.1 What is Seldon-Deploy? . 1
1.2 Seldon Core . 1
1.3 KFServing . 3
1.4 Alibi . 3

1.4.1 Audience . 4
1.4.1.1 Who should use Seldon Deploy? . 4

2 Release Notes 7
2.1 Seldon Deploy 1.3.0 . 7

2.1.1 What’s New . 7
2.1.2 Bug fixes . 7

2.2 Seldon Deploy 1.2.1 . 8
2.2.1 Bug fixes . 8

2.3 Seldon Deploy 1.2.0 . 8
2.3.1 Breaking Changes . 8
2.3.2 What’s New . 8
2.3.3 Bug fixes . 8

2.4 Seldon Deploy 1.1.2 . 8
2.4.1 Bug fixes . 9

2.5 Seldon Deploy 1.1.0 . 9
2.5.1 What’s New . 9
2.5.2 Bug fixes . 9

2.6 Seldon Deploy 1.0.0 . 9
2.6.1 Breaking Changes . 9
2.6.2 What’s New . 9
2.6.3 Bug fixes . 10

2.7 Seldon Deploy 0.9.0 . 10
2.7.1 Breaking Changes . 10
2.7.2 What’s New . 10
2.7.3 Bug fixes . 10

2.8 Seldon Deploy 0.8.2 . 10
2.8.1 Bug fixes . 10

2.9 Seldon Deploy 0.8.1 . 11
2.9.1 What’s New . 11
2.9.2 Bug fixes . 11

2.10 Seldon Deploy 0.8.0 . 11
2.10.1 Breaking Changes . 11
2.10.2 What’s New . 11
2.10.3 Bug fixes . 12

i

2.11 Seldon Deploy 0.7.0 . 12
2.11.1 Breaking Changes . 12
2.11.2 What’s New . 12
2.11.3 Bug fixes . 12

2.12 Seldon Deploy 0.6.2 . 12
2.12.1 Bug fixes . 12

2.13 Seldon Deploy 0.6.1 . 12
2.13.1 Bug fixes . 13

2.14 Seldon Deploy 0.6.0 . 13
2.14.1 Breaking Changes . 13
2.14.2 What’s New . 13
2.14.3 Bug fixes . 13

2.15 Seldon Deploy 0.5.2 . 14
2.15.1 Bug fixes . 14

3 Getting Started 15
3.1 Installation Types . 15
3.2 Component integrations . 15
3.3 Pre-requisites . 16
3.4 Cluster Requirements . 16
3.5 Older Kubernetes Versions . 16
3.6 Newer Kubernetes Versions . 17
3.7 References . 17

3.7.1 Download resources . 17
3.7.2 Applying a License . 17
3.7.3 Trial Installation . 18

3.7.3.1 Trial Installation Options . 18
3.7.3.2 Configuration . 18
3.7.3.3 References . 19

3.7.4 Production Installation . 26
3.7.4.1 Components overview . 26
3.7.4.2 References . 27

3.7.5 Multi-tenant Installation . 70
3.7.5.1 Multi-tenant Guidance . 71

3.7.6 OpenShift Installation . 73
3.7.6.1 Red Hat Marketplace Installation . 73
3.7.6.2 Other OpenShift Installations . 73

3.7.7 Installation Types . 74
3.7.7.1 Trial vs Production Install . 74
3.7.7.2 Easiest Ways to Get Started . 74
3.7.7.3 What if I also want an ML training platform? . 75
3.7.7.4 How to Size a Cluster? . 75

4 Product Tour 77
4.1 Deployment Dashboard . 77

4.1.1 Request Monitoring . 78
4.1.2 Distributions Monitoring . 78
4.1.3 Request Logs . 80
4.1.4 Requests to Models . 81

4.1.4.1 Make a prediction . 81
4.1.4.2 Load Test . 82

4.2 Deployment Wizard . 82
4.2.1 Seldon Deployment Wizard . 83
4.2.2 Kubeflow Inference Service Wizard . 83

ii

4.3 Model Explanations . 84
4.3.1 Available Methods . 84

4.3.1.1 Tabular Data . 84
4.3.1.2 Text Data . 85
4.3.1.3 Image Data . 86

4.4 Rollout Strategies . 86
4.4.1 Canary . 86
4.4.2 Shadow . 88

4.5 REST API . 89
4.5.1 Usage . 90
4.5.2 Authentication . 91
4.5.3 Versioning . 93
4.5.4 Reference . 93

4.5.4.1 API Reference (v1alpha1) . 93

5 Demos 95
5.1 Seldon Core Demos . 95

5.1.1 Canary Promotion . 95
5.1.1.1 Iris Model . 95
5.1.1.2 Deploy Model . 96
5.1.1.3 Start Load Test . 96
5.1.1.4 Create Canary . 98

5.1.2 Model Explanations with Anchor Images . 99
5.1.2.1 Create Model . 100
5.1.2.2 Get Predictions . 100
5.1.2.3 Add an Anchor Images Explainer . 100
5.1.2.4 Get Explanation for one Request . 100

5.1.3 Model Explanations with Anchor Tabular . 100
5.1.3.1 Create Model . 101
5.1.3.2 Get Predictions . 101
5.1.3.3 Add an Anchor Tabular Explainer . 102
5.1.3.4 Get Explanation for one Request . 102

5.1.4 Model Explanations with Anchor Text . 103
5.1.4.1 Create Model . 103
5.1.4.2 Get Predictions . 104
5.1.4.3 Add an Anchor Text Explainer . 104
5.1.4.4 Get Explanation for one Request . 104

5.1.5 Model Catalogue . 104
5.1.5.1 Registering Models and Editing Metadata . 104
5.1.5.2 Register New Model . 105
5.1.5.3 Edit Model Metadata . 105

5.1.6 Outlier Detection with CIFAR10 Image Classifier . 106
5.1.6.1 Create Model . 107
5.1.6.2 Setup Outlier detector . 107
5.1.6.3 Make Predictions . 107
5.1.6.4 View outliers on the Requests Screen . 107
5.1.6.5 Monitor outliers on the Monitor Screen . 107
5.1.6.6 Troubleshooting . 107

5.1.7 Drift Detection with CIFAR10 Image Classifier . 108
5.1.7.1 Create A Model . 108
5.1.7.2 Add A Drift Detector . 108
5.1.7.3 Make Predictions . 109
5.1.7.4 Monitor Drift On The Monitor Screen . 109
5.1.7.5 Troubleshooting . 109

iii

5.1.8 Model Accuracy Metrics with Iris Classifier . 110
5.1.8.1 Create Model . 110
5.1.8.2 Setup Metrics Server . 110
5.1.8.3 Make Predictions . 110
5.1.8.4 Send Feedback . 111
5.1.8.5 Monitor accuracy metrics on the Monitor Screen 112
5.1.8.6 Submit batch feedback using Batch Processor component 112
5.1.8.7 Troubleshooting . 114

5.1.9 Batch Requests . 114
5.1.9.1 Pre-requisites . 114
5.1.9.2 Deploy Model . 115
5.1.9.3 Setup Input Data . 115
5.1.9.4 Run a Batch Job . 116

5.1.10 NVIDIA Triton Server and Alibi Explanations . 118
5.1.10.1 Deploy an image classifier model . 119
5.1.10.2 Make model predictions . 120
5.1.10.3 Configure an Alibi Anchor Images Explainer . 120
5.1.10.4 Get Explanation for a single prediction . 121

5.1.11 Kubeflow Example . 121
5.1.11.1 Kubeflow Pipeline with Kale example using the Seldon Deploy Enterprise API . . . 121
5.1.11.2 Prerequisites . 122
5.1.11.3 GCP Setup . 122
5.1.11.4 RBAC Setup . 122
5.1.11.5 Pipeline/Notebook Parameters . 123
5.1.11.6 Kubeflow Notebook Server . 123
5.1.11.7 Test Pipeline . 123
5.1.11.8 Tested on . 124

5.1.12 Distributions Monitoring . 125
5.1.12.1 Register a income classifer model . 125
5.1.12.2 Configure predictions schema . 125
5.1.12.3 Launch a Seldon Core deployment . 125
5.1.12.4 Make predictions using the model deployment . 126
5.1.12.5 Observe predictions and feature distributions . 127
5.1.12.6 Filter distributions by time or feature level filters 127
5.1.12.7 Configuring parameters . 127

5.1.13 Project based authorization . 127
5.1.13.1 Setup . 127
5.1.13.2 Confirm policies are working . 129

5.2 KFServing Demos . 130
5.2.1 Canary Promotion . 130

5.2.1.1 Run a Load Test . 131
5.2.1.2 Adding a Canary . 132
5.2.1.3 Delete the Deployment . 132

5.2.2 Model Explanations with Anchor Images . 132
5.2.2.1 Create Model . 132
5.2.2.2 Get Predictions . 133
5.2.2.3 Add an Anchor Images Explainer . 133
5.2.2.4 Get Explanation for one Request . 133

5.2.3 Model Explanations with Anchor Tabular . 133
5.2.3.1 Create Model . 133
5.2.3.2 Get Predictions . 134
5.2.3.3 Add an Anchor Tabular Explainer . 134
5.2.3.4 Get Explanation for one Request . 134

5.2.4 Model Explanations with Anchor Text . 134

iv

5.2.4.1 Create Model . 134
5.2.4.2 Get Predictions . 135
5.2.4.3 Add an Anchor Text Explainer . 135
5.2.4.4 Get Explanation for one Request . 135

5.2.5 Model Catalogue . 135
5.2.5.1 Registering Models and Editing Metadata . 135
5.2.5.2 Register New Model . 136
5.2.5.3 Edit Model Metadata . 136

5.2.6 Outlier Detection with CIFAR10 Image Classifier . 137
5.2.6.1 Create Model . 138
5.2.6.2 Setup Outlier detector . 138
5.2.6.3 Make Predictions . 138
5.2.6.4 View outliers on the Requests Screen . 138
5.2.6.5 Monitor outliers on the Monitor Screen . 138

5.2.7 Drift Detection with CIFAR10 Image Classifier . 138
5.2.7.1 Create A Model . 139
5.2.7.2 Add A Drift Detector . 139
5.2.7.3 Make Predictions . 140
5.2.7.4 Monitor Drift On The Monitor Screen . 140

5.2.8 Distributions Monitoring . 140
5.2.8.1 Register a income classifer model . 141
5.2.8.2 Configure predictions schema . 141
5.2.8.3 Launch a KFServing deployment . 141
5.2.8.4 Make predictions using the model deployment . 141
5.2.8.5 Observe predictions and feature distributions . 142
5.2.8.6 Filter distributions by time or feature level filters 142
5.2.8.7 Configuring parameters . 142

6 Architecture 143
6.1 Authentication . 144

6.1.1 App-level Auth . 144
6.1.2 Kubeflow Gateway Auth . 144

6.2 Authorization . 144
6.2.1 Kubernetes Namespace Labels . 145
6.2.2 Open Policy Agent policies . 145

6.3 Explainers . 145
6.4 Gateways . 145
6.5 GitOps . 146
6.6 Kubeflow . 146
6.7 Model Metadata Store . 146

6.7.1 Querying model metadata . 146
6.7.1.1 Making queries . 146
6.7.1.2 Querying for tags and metrics . 147
6.7.1.3 Queries using the API . 147
6.7.1.4 Valid query field names and values . 147

6.8 Monitoring . 147
6.9 Request Logging . 148
6.10 Serving Solutions . 149

6.10.1 Seldon Core . 149
6.10.2 KFServing . 149

7 Operations 151
7.1 App Analytics . 151

7.1.1 Disable app analytics . 151

v

7.1.2 Events tracked . 151
7.1.2.1 User login attributes . 152

7.2 Deployment Models . 152
7.2.1 Multiple environments . 152

7.2.1.1 Namespace environments . 153
7.2.1.2 Cluster environments . 153

7.3 GitOps Sync . 153
7.4 Kubernetes Resources . 154
7.5 LDAP Integration . 156

7.5.1 Integration Options . 156
7.5.2 Debugging Keycloak/Groups . 158

7.6 Namespace Visibility . 160
7.6.1 Visibility Restriction per Namespace . 160
7.6.2 Using namespace labels . 161

7.6.2.1 Global Visibility . 161
7.6.2.2 Group Based Visibility Restrictions . 161
7.6.2.3 User-Based Visibility Restrictions . 162

7.6.3 Using Open Policy Agent policies . 162
7.6.3.1 Global Visibility . 162
7.6.3.2 Group Based Visibility Restrictions . 163
7.6.3.3 User-Based Visibility Restrictions . 163

7.7 Namespace Setup . 164
7.7.1 Basic Namespace Setup . 164

7.7.1.1 With namespace labels . 164
7.7.1.2 With authorization policies . 164

7.7.2 Namespace Filtering . 164
7.7.2.1 With namespace labels . 164
7.7.2.2 With authorization policies . 165

7.7.3 Batch Jobs Permissions . 165
7.7.4 Object Storage Secrets . 165
7.7.5 Gitops . 165
7.7.6 Multi-tenant Permissions (Only Used for Multi-tenant Installations) 165
7.7.7 Seldon-logs namespace (a special namespace) . 165

7.8 Authorization Policies Management . 165
7.8.1 Policy schema . 166

7.8.1.1 Targets . 166
7.8.1.2 Resources . 166
7.8.1.3 Examples . 167

7.8.2 Policy evaluation . 168
7.8.3 Policy operations . 168

7.8.3.1 Migrating from Namespace labels . 168
7.8.3.2 Adding a new policy . 169
7.8.3.3 Deleting an existing policy . 169
7.8.3.4 Limitation . 169

7.9 Visibility of projects . 169
7.9.1 Setup . 169
7.9.2 Protected resources and policy setup . 169

7.9.2.1 Models . 169
7.9.2.2 Deployments . 170

7.9.3 Associating resources in Kubernetes with a project . 170
7.9.3.1 When deploying through the UI . 171
7.9.3.2 When deploying manually (gitops, kubectl, etc.) 171

7.10 Single sign-on (SSO) . 175
7.11 Theme Customization . 176

vi

7.11.1 Customization . 176
7.11.2 Apply custom theme configuration . 176
7.11.3 Remove custom theme configuration . 177

7.12 Usage Monitoring . 177

8 Upgrading 179
8.1 Upgrading to 1.3.0 . 179
8.2 Upgrading to 1.2.0 . 180
8.3 Upgrading to 1.1.0 . 181
8.4 Upgrading to 1.0.0 . 181
8.5 Upgrading to 0.9.0 . 182
8.6 Upgrading to 0.8.2 . 182
8.7 Upgrading to 0.8.0 . 183
8.8 Upgrading to 0.7.0 . 183

8.8.1 Upgrading Knative . 184
8.8.1.1 Upgrading to 0.18 . 184

9 Help and Support 187
9.1 Troubleshooting . 187

9.1.1 Browser Specifications . 187
9.1.2 Errors from Seldon Deploy . 188
9.1.3 Insufficient ephemeral storage in EKS clusters . 188
9.1.4 Elastic Queue Capacity . 189
9.1.5 Request Logs Entries Missing . 189
9.1.6 Request Logs Entries Incorrect . 190
9.1.7 Auth . 190
9.1.8 Knative . 190
9.1.9 Argo and Batch . 190
9.1.10 Prometheus . 190
9.1.11 Serving Engines . 190

10 Archive 191
10.1 Previous versions . 191

vii

viii

CHAPTER

ONE

ABOUT

1.1 What is Seldon-Deploy?

Seldon Deploy provides oversight and governance for machine learning deployments.

Easily deploy your models in an audited way with gitops. Leverage advanced monitoring and perform alibi-powered
explanations on requests.

Seldon Deploy is an enterprise product to accelerate deployment management on top of the open source tools Seldon
Core, KFServing and Seldon Alibi.

• Deploy machine learning models easily using industry leading Seldon and KfServing open projects.

• Ensure safe model deployment using the Gitops paradigm.

• Audit model predictions using Black Box Model Explainers.

• Monitor running models and search request/response logs.

• Update models via Canary workflows.

1.2 Seldon Core

Seldon Core is an open source platform for deploying machine learning models on a Kubernetes cluster.

• Deploy machine learning models in the cloud or on-premise.

• Get metrics and ensure proper governance and compliance for your running machine learning models.

• Create powerful inference graphs made up of multiple components.

• Provide a consistent serving layer for models built using heterogeneous ML toolkits.

1

https://docs.seldon.io/en/latest/
https://docs.seldon.io/en/latest/
https://github.com/kubeflow/kfserving
https://docs.seldon.io/projects/alibi/en/latest/

Seldon Deploy

Seldon Core fits into the stack alongside Seldon Deploy and your existing training pipelines as shown below:

See the Seldon Core documentation for further details.

2 Chapter 1. About

https://docs.seldon.io/projects/seldon-core/en/latest/

Seldon Deploy

1.3 KFServing

KFServing provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary
frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces
for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX.

It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cut-
ting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. It
enables a simple, pluggable, and complete story for Production ML Serving including prediction, pre-processing,
post-processing and explainability.

1.4 Alibi

1.3. KFServing 3

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Seldon Deploy

Alibi is an open source Python library aimed at machine learning model inspection and interpretation. The initial focus
on the library is on black-box, instance based model explanations.

Its goals are:

• Provide high quality reference implementations of black-box ML model explanation algorithms

• Define a consistent API for interpretable ML methods

• Support multiple use cases (e.g. tabular, text and image data classification, regression)

• Implement the latest model explanation, concept drift, algorithmic bias detection and other ML model monitor-
ing and interpretation methods

1.4.1 Audience

1.4.1.1 Who should use Seldon Deploy?

There are various roles that should use Seldon Deploy.

Data Scientist

Why data scientists should use Seldon Deploy

Data scientist can use Seldon Deploy while they develop their models and when its is in Staging.

Some of the benefits include:

• Quickly deploy and update models.

• Understand model predictions through explanation techniques to help build better models.

• Ensure models are ready for the promotion to production.

Devops Engineer

Why Devops Engineers should use Seldon Deploy

Devops Engineers can use Seldon to ensure machine learning models are run safely and successfully in production.

Some of the benefits include:

• Deploy and rollout via Canaries new machine learning models.

• Ensure all actions performed on a model are auditable via GitOps.

• Monitor running models in real time.

• Provide feedback on particular model predictions.

4 Chapter 1. About

https://github.com/SeldonIO/alibi

Seldon Deploy

Managers and Auditors

Why Managers and Auditors should use Seldon Deploy

Managers and Auditors can use Seldon to ensure machine learning models running in production are providing the
benefits to the organisation and are properly audited.

Some of the benefits include:

• Check all models are running as expected.

• Audit actions there were performed on models.

• Provide feedback to clients and customer on particular model predictions that have been produced.

1.4. Alibi 5

Seldon Deploy

6 Chapter 1. About

CHAPTER

TWO

RELEASE NOTES

Seldon Deploy Release Notes

2.1 Seldon Deploy 1.3.0

9 July 2021

2.1.1 What’s New

• Feature Distributions Monitoring

• Policy Based Authorization (experimental)

• Deploying Models from Model Catalog

• Advanced query functionality for Model Metadata

• Prediction Schema support for Model Metadata

• Extended support for storage buckets using Rclone

• KFServing V2 protocol based explanations

• Env secret configuration for Seldon Deployments

• Support for client credentials grant auth using Seldon Deploy SDK

2.1.2 Bug fixes

• Fix for resource monitoring charts being duplicated for transformers and model containers

• Fix for invalid path when sending requests to MLServer deployments

• Fix for 50/50 canary traffic split causing Promote/Remove buttons to disappear

• Fix for long user group list causing overflow on About page

7

Seldon Deploy

2.2 Seldon Deploy 1.2.1

3 June 2021

2.2.1 Bug fixes

• Fix for higher than expected CPU load when Model Catalogue is enabled.

2.3 Seldon Deploy 1.2.0

26 April 2021

2.3.1 Breaking Changes

• Moving detectors to user namespace (see upgrading)

2.3.2 What’s New

• Model metadata store and catalogue

• Seldon Deploy server prometheus metrics

• Secrets for detector components

• Improved Gitops for kubernetes 1.18+

• Improved Triton support in wizard

• Oauth2 debugging documentation and testing tools

2.3.3 Bug fixes

• Fix for unexpected logout for group-restricted namespace

• Fix for SeldonDeployment without componentSpecs section not accessible in UI

2.4 Seldon Deploy 1.1.2

17 March 2021

8 Chapter 2. Release Notes

Seldon Deploy

2.4.1 Bug fixes

• Fix for outlier, drift and metrics server artefacts not being accessible from private buckets.

2.5 Seldon Deploy 1.1.0

10 February 2021

2.5.1 What’s New

• Updated UI design

• Added both parameters and environment vars in wizard

• Added configurable runAsUser for detector components

• Added basic auth elastic creds

• Added active OpenAPI docs

• Added ability for not having to use clusterwide access

2.5.2 Bug fixes

• Fix for using input/output transformers

• Fix for needing ID Token Hint to the OIDC logout request

2.6 Seldon Deploy 1.0.0

27 November 2020

2.6.1 Breaking Changes

• Changes to the configuration (see upgrading)

2.6.2 What’s New

• Drift detection analytics

• Batch inference processing

• Image explanations for Alibi explainer

• Seldon Core version 1.5.0 support

• kfserving version 0.4.1 support

• Kubeflow version 1.2 support

• OAuth annotations to Swagger spec

• Multitenancy support

2.5. Seldon Deploy 1.1.0 9

Seldon Deploy

2.6.3 Bug fixes

• Fix for metrics graph problems on Firefox

2.7 Seldon Deploy 0.9.0

6 November 2020

2.7.1 Breaking Changes

• Seldon Deploy now requires activation with a valid licence

2.7.2 What’s New

• Usage Monitoring for user deployments

• Improved Outlier secrets handling

• Support for new versions of istio and knative

• Support for seldon core v1.4.0

• Data science metrics monitoring

• Improved outlier detection chart

2.7.3 Bug fixes

• Fix for not being able to filter predictor field for resource monitoring queries

• Fix for kfserving crd validation failures

• Fix for prometheus disk storage issues

2.8 Seldon Deploy 0.8.2

23 October 2020

2.8.1 Bug fixes

• YAML file extension support for Gitops

• jsonData requests to be displayed from the UI

• Updating request logger image (docker.io/seldonio/seldon-request-logger:1.3.0-json)

• Pod logs viewable for custom model containers

10 Chapter 2. Release Notes

http://docker.io/seldonio/seldon-request-logger:1.3.0-json

Seldon Deploy

2.9 Seldon Deploy 0.8.1

28 September 2020

2.9.1 What’s New

• Added secure flag for auth cookies on the browser

2.9.2 Bug fixes

• Fixed incorrect CPU/Memory metrics for additional predictors

• Supporting modified content-type headers behind reverse proxies

2.10 Seldon Deploy 0.8.0

8 September 2020

2.10.1 Breaking Changes

• The sd-install script is now called sd-install-default. Or for a kubeflow install there’s sd-install-kubeflow.

• There are also helm chart values file changes. See upgrading section.

2.10.2 What’s New

• Option to use SSH for git credentials via secret (see upgrading)

• New navigation sidebar

• Adding resource parameter option for token exchange to support ADFS/azure auth

• Adding resource_urn to auth code url

• Expose req logger replicas

• Adding theme customization for deploy UI (whitelabelling support)

• Reorganising sd install scripts

• Add mldeployments tag description to API spec

• Adding auth check for websocket events

• Adding logging to auth flow

• Updating seldon-core dependency to v1.2.3

• Updating swagger docs urls

• Add optional loadbalancersourceranges to helm chart

• Upgrading kfserving to v0.4.0 in default setup

• Adding support for SSH Key Access for Gitops

2.9. Seldon Deploy 0.8.1 11

Seldon Deploy

2.10.3 Bug fixes

• Adding fluentd labels to inferenceservice deployments for logs

• Filtering websocket data in context and updating namespaces selection

• Avoid user needing global git config

2.11 Seldon Deploy 0.7.0

7 July 2020

2.11.1 Breaking Changes

• There are some helm chart values file changes. See upgrading section.

2.11.2 What’s New

• Support for openshift.

• Configurable request forms for installs with different cluster/ingress types (e.g. openshift).

• Remove/change file functionality during payload upload.

• Primary Request Logger in seldon-logs namespace.

2.11.3 Bug fixes

• Knative prometheus port conflict fixed.

2.12 Seldon Deploy 0.6.2

24 June 2020

2.12.1 Bug fixes

• App level auth redirect issue

2.13 Seldon Deploy 0.6.1

27 May 2020

12 Chapter 2. Release Notes

Seldon Deploy

2.13.1 Bug fixes

• Limit on auth cookie size

• Support token-based elastic auth

• Restructuring application paths and in-app navigation

• Install fails if kubeflow user and password missing

• Issue with env variables missing on canary promotion

• Resources prometheus can be different from requests prometheus

2.14 Seldon Deploy 0.6.0

22 April 2020

2.14.1 Breaking Changes

• New request logging update

• New gitops repository folder structure

2.14.2 What’s New

• Outlier Detection Configuration and Monitoring

• App-level authentication with OIDC

• Tensorflow protocol for Seldon deployments

• MLFlow pre-packaged server in the deployment wizard

• Kubernetes pods and logging

• Displaying sync status for gitops namespaces

• New requests and resources monitoring dashboard

• Bitbucket support for gitops

2.14.3 Bug fixes

• Infinite loading if no valid labeled namespace was found

• No deployments were displayed if at least one was faulty

2.14. Seldon Deploy 0.6.0 13

Seldon Deploy

2.15 Seldon Deploy 0.5.2

17 March 2020

2.15.1 Bug fixes

• Browser timezone fix

14 Chapter 2. Release Notes

CHAPTER

THREE

GETTING STARTED

Obtaining Access

To use Seldon Deploy for your enterprise, get in touch with Seldon for a free trial license to apply

3.1 Installation Types

• Trial Installations - Scripts that install default configurations that can be used to trial the Seldon Deploy cluster.
These provide a simple way to get up and running to test the functionalities.

• Production Installation - Modular installation into existing cluster with instructions on how to leverage Seldon
Deploy integrations. This is recommended installation for production setups.

• Openshift Hat Installation - Red Hat OpenShift installation.

See Install Types for more on how to choose.

3.2 Component integrations

Below are the integrations that Seldon Deploy supports, together with the versions currently supported for each of the
component.

Component Supported Versions Integration level
seldon-core 1.9.1 and above Required
Istio 1.7.3 and above Required
Elasticsearch 6.x and above Recommended
ArgoCD 1.4.x and above Recommended
Prometheus 9.7 and above Recommended
PostgreSQL (Model Metadata Storage) 9.6 and above Recommended
Fluentd (or equivalent ELK log collection) 6.x and above Optional
Dex (or equivalent OIDC provider - eg Keycloak) 2.x and above Optional
KFserving 0.4.1 and above Optional
Knative (Eventing, Serving & Monitoring) 0.18.x and above Optional

Note KFServing requires istio 1.3.1. More on istio/gateway options in architecture. Detector components such as
outliers requires Knative Eventing 0.18 (which requires k8s 1.16). Knative Serving 0.18. Any compatibility changes
between versions get listed here and in the upgrading section

15

https://www.seldon.io/tech/products/deploy/

Seldon Deploy

3.3 Pre-requisites

De-
pen-
dency

Version Notes

Dock-
er-
hub

n/a https://hub.docker.com/ Access needs to be granted explicitly by Seldon in order to
access resources such as docker images. A dockerhub account is needed and its
credentials will be needed to setup imagePullSecrets.

Ku-
ber-
netes

1.16 . . . 1.18 rec-
ommended

Seldon Deploy is intended for Kubernetes version greater than or equal to 1.16 and
less than or equal to 1.17.

Ku-
ber-
netes

1.12 . . . 1.19 avail-
able

See Older Kubernetes Versions and Newer Kubernetes
Versions sections below for limitations.

Git
Server

n/a To use GitOps access an HTTPS access to git server is required. GitOps is optional,
but suggested.

kubectl within one minor
version difference
of your cluster

https://kubernetes.io/docs/tasks/tools/install-kubectl/

helm 3.0.0 or greater is
required

https://helm.sh/docs/intro/install/

3.4 Cluster Requirements

Cloud
Provider

Require-
ments

Notes

GKE 2 x e2-
standard-8
nodes

This is 16vCPUs and 60GB RAM.

AWS 4 x t2.xlarge This is to allow headroom to run models and because the full install includes kube-
flow, knative, istio and the elastic and grafana-prometheus stacks.

Warning: Fewer and larger worker nodes are suggested as this requires less resource for the control plane. On
EKS in particular increasing resources for the control plane has to be done explicitly. Too few nodes can also lead
to problems on EKS with pods per node.

3.5 Older Kubernetes Versions

Knative 0.18+ requires Kubernetes 1.16. This places limitations on running Seldon Deploy on older Kubernetes
versions.

Here is what can be done for older Kubernetes versions.

The request logger can be used with older knative versions. The helm values file contains this entry:

16 Chapter 3. Getting Started

https://hub.docker.com/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://helm.sh/docs/intro/install/
https://eksctl.io/usage/customizing-the-kubelet/
https://github.com/kubernetes/autoscaler/issues/1576

Seldon Deploy

requestLogger:
trigger:
apiVersion: "eventing.knative.dev/v1"

Its value can be changed to “eventing.knative.dev/v1alpha1” for older versions of knative eventing.

The request logger can also be run without knative.

Both Seldon Core and KFServing have default URLs that their install instructions point to a knative broker in
seldon-logs namespace (executor.requestLogger.defaultEndpoint for seldon core and logger.
defaultUrl for KFServing). These can be changed to point to seldon-request-logger.seldon-logs
(or your request logger location).

Detector component wizards and the Data Science metrics component wizard do need knative 0.18. For older k8s you
can’t run those demos.

3.6 Newer Kubernetes Versions

Seldon Deploy can work with kubernetes 1.19. At the time of writing KFServing cannot, which is an optional depen-
dency.

3.7 References

3.7.1 Download resources

Download Seldon Deploy installation resources

TAG=1.3.0 && \
docker create --name=tmp-sd-container seldonio/seldon-deploy-server:$TAG && \
docker cp tmp-sd-container:/seldon-deploy-dist/seldon-deploy-install.tar.gz . && \
docker rm -v tmp-sd-container

tar -xzf seldon-deploy-install.tar.gz

3.7.2 Applying a License

Applying a Seldon Deploy License

Obtaining Access

To use Seldon Deploy for your enterprise, get in touch with Seldon - request a free trial license via the request form.

A license can be entered in the UI when prompted.

Alternatively, it can be put in a text file called license and applied like this

kubectl create configmap -n seldon-system seldon-deploy-license --from-file=license -
→˓o yaml --dry-run=client | kubectl apply -f -
kubectl delete pod -n seldon-system -l app.kubernetes.io/name=seldon-deploy || true

3.6. Newer Kubernetes Versions 17

https://github.com/kubeflow/kfserving/issues/1197
https://www.seldon.io/tech/products/deploy/
https://www.seldon.io/tech/products/deploy/

Seldon Deploy

3.7.3 Trial Installation

Trial installations for setting up a new clusters

3.7.3.1 Trial Installation Options

These scripts will install the default configurations that can be used to trial the Seldon Deploy. These provide a simple
way to get you up and running to test the functionalities that we offer.

• Default Trial Installation

• Trial Installation with Kubeflow

• KIND Trial Installation - limited functionality

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

3.7.3.2 Configuration

The trial installations of Seldon Deploy can be configured using a file called “sdconfig.txt”.

The location and format of this file is

${HOME}/.config/seldon/seldon-deploy/sdconfig.txt

GIT_USER=<your GIT user>
GIT_TOKEN=<your GIT token> # This is either GitHub token or
→˓Bitbucket App password
GIT_EMAIL=<your GIT email>
ENABLE_GIT_SSH_CREDS=false
SD_USER_EMAIL=<user email> # The user for access to Seldon Deploy
→˓eg. admin@seldon.io
SD_PASSWORD=<user password>
EXTERNAL_HOST= # This can be blank
EXTERNAL_PROTOCOL=https # "https" or "http"
KFSERVING_PROTOCOL=$EXTERNAL_PROTOCOL
MULTITENANT=false # Restricts permissions to
→˓namespace-level. Ask seldon before using.
ENABLE_APP_AUTH=true # 'true' or 'false'
VIRTUALSERVICE_CREATE=true
ENABLE_METADATA_POSTGRES=true # If false will skip installing
→˓PostgreSQL in the trial cluster and metadata API will be unavailable.
ENABLE_OPA=false # If true will fetch OPA policies from a `seldon-deploy-policies`
→˓config map from the namespace Deploy is running in.
ENABLE_PROJECT_BASED_AUTH=false # If true will authorize requests to resources based
→˓on what access does the user have to all models in that resource.

Use the following script to check or create an initial file to fill in.

cd seldon-deploy-install
./check-config

18 Chapter 3. Getting Started

Seldon Deploy

3.7.3.3 References

Default Trial Installation

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

For AWS the EXTERNAL_PROTOCOL in the config file should be set to http. If https is needed on AWS then ssl
should be configured on the istio gateway separately, not using the installer.

Simple Modular Installation

We will use an end-to-end installer which sets up Seldon Deploy and all ecosystem components.

These components include:

• Seldon Core

• Seldon Deploy

• Serverless Request Logging

• Grafana Visualisations

• GitOps Bitbucket/Github with ArgoCD

Install the Ecosystem

This first step will set up all ecosystem components for Seldon Deploy except for the GitOps ArgoCD component.

cd seldon-deploy-install
./prerequisites-setup/default-setup.sh
./sd-setup/sd-install-default

Hint: Ensure you have the correct current context set for your cluster, before starting the install.

Gitops

Gitops setup is optional. You will need an account on either github.com or bitbucket.org.

Installation requires htpasswd. Can be installed on Ubuntu, Debian and Mint with:

sudo apt install apache2-utils

3.7. References 19

http://github.com
http://bitbucket.org

Seldon Deploy

GitHub

You will need personal access token configured with full control of private repositories as shown:

Then make sure that you setup GIT_USER and GIT_TOKEN in the sdconfig.txt file and run

./sd-setup/gitops-setup.sh seldon-gitops "seldon"

Bitbucket

You will need app password token configured with full control of private repositories as shown:

20 Chapter 3. Getting Started

Seldon Deploy

Then make sure that you setup GIT_USER and GIT_TOKEN in the sdconfig.txt file and run

GIT_PROVIDER=bitbucket ./sd-setup/gitops-setup.sh seldon-gitops "seldon"

If you prefer to install GitOps manually, please see Bitbucket for step by step instructions.

3.7. References 21

Seldon Deploy

Open Policy Agent Authorization

To enable Open Policy Agent authorization the ENABLE_OPA variable must be set to true in the sdconfig.txt
file. To use OPA to authorize projects as well, ENABLE_PROJECT_BASED_AUTH needs to also be true.

Accessing Seldon Deploy

After installation get url for the dashboard.

cd seldon-deploy-install
./sd-setup/show-seldon-deploy-url

Kubeflow Trial Installation

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

Simple Kubeflow Installation

Here we use an end-to-end kubeflow installer which sets up Seldon Deploy and all ecosystem components.

These components include:

• Seldon Core

• Seldon Deploy

• Serverless Request Logging

• Grafana Visualisations

• GitOps Bitbucket/Github with ArgoCD

Install the Ecosystem

The first step is to update the configuration options to use the kubeflow auth setup for your Seldon Deploy install as
follows,

ENABLE_APP_AUTH=false
OIDC_PROVIDER=http://dex.auth.svc.cluster.local:5556/dex

The next step will set up all ecosystem components (including kubeflow) for Seldon Deploy except for the GitOps
ArgoCD component.

cd seldon-deploy-install
./prerequisites-setup/kubeflow-setup.sh
./sd-setup/sd-install-kubeflow

Hint: Ensure you have the correct current context set for your cluster, before starting the install.

22 Chapter 3. Getting Started

https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/

Seldon Deploy

The kubeflow-setup.sh script is broken into sections so if you have an existing kubeflow install then its initial sections
could be skipped.

The target kubeflow distribution is the istio_dex 1.2 distribution. The credentials for this are admin@seldon.
io/12341234

Gitops

Gitops setup is optional. You will need an account on either github.com or bitbucket.org.

Installation requires htpasswd. Can be installed on Ubuntu, Debian and Mint with:

sudo apt install apache2-utils

GitHub

You will need personal access token configured with full control of private repositories as shown:

Then make sure that you setup GIT_USER and GIT_TOKEN in the sdconfig.txt file and run

./sd-setup/gitops-setup.sh seldon-gitops "default,kubeflow"

3.7. References 23

http://kubeflow-setup.sh
https://www.kubeflow.org/docs/started/k8s/kfctl-istio-dex/
http://github.com
http://bitbucket.org

Seldon Deploy

Bitbucket

You will need app password token configured with full control of private repositories as shown:

Then make sure that you setup GIT_USER and GIT_TOKEN in the sdconfig.txt file and run

GIT_PROVIDER=bitbucket ./sd-setup/gitops-setup.sh seldon-gitops "default,kubeflow"

If you prefer to install GitOps manually, please see Bitbucket for step by step instructions.

24 Chapter 3. Getting Started

Seldon Deploy

Accessing Seldon Deploy

After installation get url for the dashboard.

cd seldon-deploy-install
./sd-setup/show-seldon-deploy-url

The username and password will come from kubeflow, not Seldon config. If kubeflow-setup.sh is used
then it will be the default for the istio_dex distro - admin@kubeflow.org and 12341234 (but the minio
creds will be patched to match the seldon config).

You can double-check the user in data.static_email of kubectl get cm -n auth dex-config -o
yaml

Kind Trial Installation

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all local tool pre-requisites are satisfied (e.g. helm cli) as well as KIND.

KIND Installation

Here we use an end-to-end installer to set up Seldon Deploy on KIND. Everything runs on the local machine with
reduced resources compared to the cloud.

The components included are most of the functionality:

• Seldon Core

• Seldon Deploy

• Serverless Request Logging

• Grafana Visualisations

Components not included are:

• GitOps Bitbucket/Github with ArgoCD

This limitation is because it’s not feasible for a GitHub webhook to call the local machine.

Install the Ecosystem

This step will set up a KIND cluster, install all ecosystem components for Seldon Deploy and Deploy itself.

cd seldon-deploy-install
./prerequisites-setup/kind-setup.sh
./sd-setup/sd-install-kind

3.7. References 25

https://github.com/kubernetes-sigs/kind

Seldon Deploy

Checking Configuration

If you setup the configuration file with ENABLE_APP_AUTH then either remove this or set it to false.
EXTERNAL_PROTOCOL should be http.

Accessing Seldon Deploy

On KIND we need to port-forward in order to access the application. In a terminal run the below and keep it running:

kubectl port-forward -n istio-system svc/istio-ingressgateway 8080:80

Then open a browser at http://localhost:8080/seldon-deploy/.

3.7.4 Production Installation

Custom installation crafted to your needs

Modular installation that allows for fully configurable installation of Seldon Deploy.

3.7.4.1 Components overview

Required components:

• Seldon Core

• Seldon Deploy

• Istio Ingress

Optional components:

• Metrics Monitoring with Prometheus

• Request Logging with Elasticsearch

• GitOps setup with ArgoCD

• App Level Authentication with OIDC provider

• Minio

• Argo

• PostgreSQL

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

26 Chapter 3. Getting Started

./seldon.html#seldon-core-installation
./seldon.html#seldon-deploy-installation

Seldon Deploy

3.7.4.2 References

Seldon Deploy

This page contains instructions and details for the advanced instalallation of Seldon Deploy and Seldon Core.

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

Prepare seldon namespaces

We start with creating a namespace that will hold Seldon’s main components, traditionally naming it
seldon-system.

kubectl create ns seldon-system || echo "Namespace seldon-system already exists"

Also a namespace for any components related to request logging.

kubectl create ns seldon-logs || echo "Namespace seldon-logs already exists"

Seldon Deploy (installation)

To install a vanilla version of Seldon Deploy:

helm upgrade seldon-deploy ./seldon-deploy-install/sd-setup/helm-charts/seldon-deploy/
→˓ \

--set image.image=seldonio/seldon-deploy-server:1.3.0 \
--set virtualService.create=false \
--set requestLogger.create=false \
--set gitops.argocd.enabled=false \
--set elasticsearch.basicAuth=false \
--set enableAppAuth=false \
--namespace=seldon-system \
--install

Now we can just wait until the Seldon Deploy roll-out finishes

kubectl rollout status deployment/seldon-deploy -n seldon-system

Note that due the flags set above this vanilla version of Seldon Deploy would lack certain features such as request
logging and gitops.

3.7. References 27

Seldon Deploy

Seldon Deploy (configuration)

Seldon Deploy is installed using helm-charts. It is recommended to use helm upgrade command with --install
flag. This will allow to re-issue the command to bring new settings or upgrade the Seldon Deploy version.

Installation options can be set in two ways:

• Using yaml values file specified with helm -f flag (recommended)

• Using helm --set flags

Please, see helm upgrade --help and official documentation for more information.

Using a yaml file with values is recommended as it provides a more reproducible installation.

The default installation values are defined in the helm-charts and can be viewed with

cat seldon-deploy-install/sd-setup/helm-charts/seldon-deploy/values.yaml

You can view values set on your current installation with

helm get values -a -n seldon-system seldon-deploy

Note that -a flag tells helm to give you all values - skipping that flag you will only see values set by you explicitly
on previous installation.

Following deploy-values.yaml file is equivalent to presented above --set options

image:
image: seldonio/seldon-deploy-server:1.3.0

rbac:
clusterWide: true

virtualService:
create: false

requestLogger:
create: false

gitops:
argocd:
enabled: false

enableAppAuth: false

elasticsearch:
basicAuth: false

You can install Seldon Deploy using the above values file with following command

helm upgrade seldon-deploy ./seldon-deploy-install/sd-setup/helm-charts/seldon-deploy/
→˓ \

-f deploy-values.yaml \
--namespace=seldon-system \
--install

28 Chapter 3. Getting Started

https://helm.sh/docs/chart_template_guide/values_files/

Seldon Deploy

Seldon Core (installation)

Seldon Core can be installed using published helm-charts. To add helm charts we can use following script

helm repo add seldonio https://storage.googleapis.com/seldon-charts
helm repo update

You can now install Seldon Core without any integrations with the script below. Make sure to follow relevant individual
feature workflow installation sections to enable specific features. For further detail on each of the parameters available
in the installation script you can read the helm chart values section in the seldon core documentation.

helm upgrade seldon-core seldonio/seldon-core-operator \
--version 1.9.1 \
--namespace seldon-system \
--install

Seldon Core (configuration)

Similarly to the Seldon Deploy case we will assume that there is a core-values.yaml file specifying Seldon Core
related configurations. The helm command will now read

helm upgrade seldon-core seldonio/seldon-core-operator \
-f core-values.yaml \
--version 1.9.1 \
--namespace seldon-system \
--install

Ensuring visibility on namespaces

The seldon.restricted=false label is required on namespaces accessible by Seldon Deploy. If you don’t add
this annotation to the namespace, you will not be able to see it in the UI.

kubectl create namespace seldon || echo "namespace seldon exists"
kubectl label ns seldon seldon.restricted=false --overwrite=true

For more information see our Namespace Visibility documentation.

Istio Ingress

Configure Seldon ingress with Istio

Istio is a production-ready service mesh solution, which Seldon Deploy uses for routing of traffic. Similarly, traffic
can also be managed by Istio for dynamically created seldon models, which simplifies how users can send requests to
a single endpoint.

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

You can use the istio CLI to install the istio containers into your cluster. Istio provides multiple installation con-
figuration profiles, it is important to choose the most appropriate configuration, especially as Istio is often used for

3.7. References 29

https://docs.seldon.io/projects/seldon-core/en/latest/charts/seldon-core-operator.html

Seldon Deploy

applications beyond just Seldon itself. You can read more about the profiles and configurations in the Istio documen-
tation.

Installing Istio Pods

First, obtain istioctl CLI that will help in installation of Istio. We will be installing version 1.7.3 which is
compatible with kubernetes clusters version 1.16-1.18.

export ISTIO_VERSION=1.7.3
curl -L https://istio.io/downloadIstio | ISTIO_VERSION=${ISTIO_VERSION} sh -

Once you have downloaded the command line interface, we can configure a cluster local gateway and other istio
components for our installation with:

cat << EOF > ./local-cluster-gateway.yaml
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:

values:
global:

proxy:
autoInject: disabled

useMCP: false
addonComponents:
pilot:

enabled: true
prometheus:

enabled: false
components:
ingressGateways:

- name: cluster-local-gateway
enabled: true
label:
istio: cluster-local-gateway
app: cluster-local-gateway

k8s:
service:

type: ClusterIP
ports:
- port: 15020
name: status-port

- port: 80
targetPort: 8080
name: http2

- port: 443
targetPort: 8443
name: https

values:
gateways:

istio-ingressgateway:
debug: error

EOF

The installation can then be performed with:

./istio-1.7.3/bin/istioctl install -f local-cluster-gateway.yaml

30 Chapter 3. Getting Started

https://istio.io/latest/docs/setup/additional-setup/config-profiles/
https://istio.io/latest/docs/setup/additional-setup/config-profiles/

Seldon Deploy

It’s worth emphasising that Istio in itself is quite a feature-rich open source project, which is often leveraged as central
service mesh for clusters. If the use-cases are more specific, there are quite a lot of different configurations that can
be chosen, examples covered above include the different installation profiles, but also there are instruction like the
documentation in the istio section for KNative.

Installing Seldon with Istio Configuration Enabled

In order to install Seldon with Istio enabled there are a couple of requirements, namely:

• An Istio gateway needs to be created

• Seldon Core Helm Chart needs to be installed with the istio values

• Seldon Deploy Helm Chart needs to be installed with istio values

Setting up Istio Gateway

Istio Gateway is required to access deployments and Seldon Deploy itself

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

name: seldon-gateway
namespace: istio-system

spec:
selector:
app: istio-ingressgateway
istio: ingressgateway

servers:
- hosts:

- "*"
port:
name: http
number: 80
protocol: HTTP

Example of https-enabled gateway can be found under

seldon-deploy-install/prerequisites-setup/istio/seldon-gateway.yaml

The Istio gateway can be created in the Istio namespace, but it can also be created in a different namespace, you will
need to make sure that the configuration of Seldon Deploy and Core are also aligned to the namespace and gateway
name.

Install Seldon Core with Istio Enabled

You can now add the following values in your core-values.yaml file. You need to make sure that the value for
the gateway is <namespace>/<gatewayname><namespace>.

istio:
enabled: true
gateway: "istio-system/seldon-gateway"

3.7. References 31

https://www.google.com/url?q=https://knative.dev/docs/install/installing-istio/&sa=D&ust=1596115750718000&usg=AFQjCNEchCSYJtJ7IcxJ9ag0V-muDvlIhw

Seldon Deploy

Install Seldon Deploy with Istio Enabled

Similarly you would add following entries to your deploy-values.yaml file

ingressGateway:
seldonIngressService: "istio-ingressgateway"
kfServingIngressService: "istio-ingressgateway"
ingressNamespace: "istio-system"

virtualService:
create: true
gateways:
- istio-system/seldon-gateway

Find address of your Seldon Deploy

Following script can help you find address of your Seldon Deploy instance running with Istio:

ISTIO_INGRESS=$(kubectl get svc -n istio-system istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
ISTIO_INGRESS+=$(kubectl get svc -n istio-system istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].hostname}')

echo "Seldon Deploy: http://$ISTIO_INGRESS/seldon-deploy/"

Metrics Monitoring

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

Installation

The analytics component is configured with the Prometheus integration. The monitoring for Seldon Deploy is based on
the Open Source Analytics package which brings in Prometheus (and Grafana) and is required for metrics collection.

Before installing we should set up a recording rules file. Name this model-usage.rules.yml. The contents of
this file are given in the last section.

Copy the default model-usage.rules.yml (and edit if desired)

cp ./seldon-deploy-install/prerequisites-setup/prometheus/model-usage.rules.yml model-
→˓usage.rules.yml

Create a configmap from the file with

kubectl create configmap -n seldon-system model-usage-rules --from-file=model-usage.
→˓rules.yml --dry-run=client -o yaml | kubectl apply -f -

32 Chapter 3. Getting Started

https://prometheus.io/
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/analytics.html

Seldon Deploy

Without these usage rules you may see warnings about usage.

This can be mounted by setting the below extraConfigmapMounts in an analytics-values.yaml:

cat << EOF > ./analytics-values.yaml
grafana:

resources:
limits:

cpu: 200m
memory: 220Mi

requests:
cpu: 50m
memory: 110Mi

prometheus:
alertmanager:
resources:

limits:
cpu: 50m
memory: 64Mi

requests:
cpu: 10m
memory: 32Mi

nodeExporter:
service:

hostPort: 9200
servicePort: 9200

resources:
limits:

cpu: 200m
memory: 220Mi

requests:
cpu: 50m
memory: 110Mi

server:
livenessProbePeriodSeconds: 30
retention: "90d"
extraArgs:

query.max-concurrency: 400
storage.remote.read-concurrent-limit: 30

persistentVolume:
enabled: true
existingClaim: ""
mountPath: /data
size: 32Gi

resources:
limits:

cpu: 2
memory: 4Gi

requests:
cpu: 800m
memory: 1Gi

extraConfigmapMounts:
- name: prometheus-config-volume

mountPath: /etc/prometheus/conf/
subPath: ""
configMap: prometheus-server-conf
readOnly: true

(continues on next page)

3.7. References 33

Seldon Deploy

(continued from previous page)

- name: prometheus-rules-volume
mountPath: /etc/prometheus-rules
subPath: ""
configMap: prometheus-rules
readOnly: true

- name: model-usage-rules-volume
mountPath: /etc/prometheus-rules/model-usage/
subPath: ""
configMap: model-usage-rules
readOnly: true

EOF

Other settings in the above are suggested only. Configure to suit your disk availability.

helm repo add seldonio https://storage.googleapis.com/seldon-charts
helm repo update

helm upgrade seldon-core-analytics seldonio/seldon-core-analytics \
--version 1.9.1 \
--namespace seldon-system \
-f analytics-values.yaml \
--install

This Prometheus installation is already configured to scrape metrics from Seldon Deployments. Seldon Core docu-
mentation on analytics covers metrics discussion and configuration of Prometheus itself.

It’s possible to leverage further custom parameters provided by the helm charts, such as:

• grafana_prom_admin_password - The admin password for grafana to use

• persistence.enabled - This provides the configuration to enable prometheus persistence

Bringing your own Prometheus

It is possible to use your own Prometheus instance - see prometheus section in the default values file

seldon-deploy-install/sd-setup/helm-charts/seldon-deploy/values.yaml

Verification / Troubleshooting

We can port-forward prometheus in order to check it. With seldon-core-analytics the prometheus service we can do
this with:

kubectl port-forward -n seldon-system svc/seldon-core-analytics-prometheus-seldon
→˓9090:80

Then go to localhost:9090 in the browser.

To confirm the recording rules are present, go to Status > Rules and search for model-usage.

If you have a seldon model running, go to Status > Targets and search for seldon_app or just seldon.
Any targets for seldon models should be green.

On the /graph page if you select from the insert metric at cursor drop-down there should be metrics that
begin with the names seldon.

34 Chapter 3. Getting Started

https://docs.seldon.io/projects/seldon-core/en/latest/analytics/analytics.html
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/analytics.html

Seldon Deploy

Request Logging

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

Install KNative Eventing

Knative Eventing is used for request logging. See Knative section for steps.

Knative eventing is recommended but see Running without KNative below if this represents a major barrier
for you.

Install EFK Stack

We suggest using the OpenDistro version of elastic for a trial and provide instructions.

Other flavours are also available.

Fluentd is used for collecting application logs. We use the request logger component for storing the bodies of
http requests to models and other data about those, as elastic documents.

Seldon Core and Deploy Configuration

For Seldon Core add to your core-values.yaml following options

executor:
requestLogger:
defaultEndpoint: "http://broker-ingress.knative-eventing.svc.cluster.local/seldon-

→˓logs/default"

For Seldon Deploy add to your deploy-values.yaml following options

requestLogger:
create: true

If using opendistro, it should also have auth enabled, in line with the instructions in that section (referenced above).

Using Deploy Metadata - Auth from Request Logger to Deploy

The request logger can optionally obtain a prediction schema from Seldon Deploy Metadata service if enabled. This
can be used to enrich prediction logs (e.g. add category name for categorical features and identify probabilistic
features) for better logging and advanced monitoring.

To enable this feature, it is necessary to ensure that the Seldon Deploy instance needs to be configured with a valid
licence. And then follow the steps below,

1. Ensure model metadata storage feature is enabled i.e metadata.pg.enabled is set to true. For more details
see postgres setup.

3.7. References 35

./postgres.html#configuring-seldon-deploy

Seldon Deploy

2. Have an auth provider that supports client credentials grant flow and enable this on a client. This can also be
done using a password grant flow for other cases where a client credentials flow is not supported.

3. Create an auth secret for the request logger configuration as below, setting the parameters as per your environ-
ment.

kubectl create secret generic {request-logger-auth-secret-name} -n seldon-logs \
--from-literal=OIDC_PROVIDER="${OIDC_PROVIDER}" \
--from-literal=CLIENT_ID="${CLIENT_ID}" \
--from-literal=CLIENT_SECRET="${CLIENT_SECRET}" \
--from-literal=OIDC_AUTH_METHOD="client_credentials" \
--from-literal=OIDC_SCOPES="${OIDC_SCOPES}" \
--dry-run=client -o yaml | kubectl apply -f -

4. Ensure requestLogger.deployHost and requestLogger.authSecret are set. Default helm chart
values should be fine.

requestLogger:
authSecret: {request-logger-auth-secret-name}

Trial Installation Setup

In the provided trial installation, a keycloak client is configured called ‘sd-api’ and a service account is also created.
The scripts are under ./prerequisites-setup/keycloak. The trial installation scripts create the auth secret
needed and fully configures the request logger and metadata automatically. But if you are installing components
yourself then you need to set this up specifically. Setting up a separate client is optional as the main deploy client
could be used. In keycloak, setting up a service account is required for client credentials auth flow.

Custom Request Logger

It’s possible for you to add your own custom request logger, with any custom logic you’d like to add. In order to do
this, you need to make sure each Seldon Deployment points to the endpoint of your custom request logger.

For this, you will need to make sure you enable the Seldon Operator Environment variable for the logger.
Prior to v1.2.x this was "EXECUTOR_REQUEST_LOGGER_DEFAULT_ENDPOINT_PREFIX" and then became
"EXECUTOR_REQUEST_LOGGER_DEFAULT_ENDPOINT". It can be enabled through the core helm chart’s
executor.requestLogger.defaultEndpoint.

Below we show an example of how you would do this for our non-knative default request logger

Running without KNative

It’s also possible to set up request logging without KNative dependency. For this, you will have to run a non-knative
request logger, which you can trigger by running the configuration below.

Make sure that you edit the elasticsearch host variable below to point to the correct elasticsearch service address.

Important: for a normal install use the helm chart to install the logger. But that uses knative eventing. If you
don’t want that then you can refer to the helm chart to create your own logger spec like the below.

To do this, first disable the requestLogger that is installed by the helm charts by setting in the deploy-values.
yaml

requestLogger:
create: false

36 Chapter 3. Getting Started

https://www.keycloak.org/docs/latest/server_admin/#_clients

Seldon Deploy

then create the deployment with your custom logger:

apiVersion: apps/v1
kind: Deployment
metadata:

name: seldon-request-logger
namespace: seldon-logs
labels:
app: seldon-request-logger

spec:
replicas: 2
selector:
matchLabels:

app: seldon-request-logger
template:
metadata:

labels:
app: seldon-request-logger

spec:
containers:

- name: user-container
image: docker.io/seldonio/seldon-request-logger:1.9.1
imagePullPolicy: Always
env:
- name: ELASTICSEARCH_HOST
value: "elasticsearch-opendistro-es-client-service.seldon-logs.svc.

→˓cluster.local"
- name: ELASTICSEARCH_PORT
value: "9200"

- name: ELASTICSEARCH_PROTOCOL
value: "https"

- name: ELASTICSEARCH_USER
valueFrom:
secretKeyRef:
name: elastic-credentials
key: username

- name: ELASTICSEARCH_PASS
valueFrom:
secretKeyRef:
name: elastic-credentials
key: password

apiVersion: v1
kind: Service
metadata:

name: seldon-request-logger
namespace: seldon-logs

spec:
selector:
app: seldon-request-logger

ports:
- protocol: TCP

port: 80
targetPort: 8080

For a secured elastic you need to set ELASTICSEARCH_PROTOCOL, ELASTICSEARCH_USER and
ELASTICSEARCH_PASS that in above example are sourced from the elastic-credentials secret.

3.7. References 37

Seldon Deploy

Configure Seldon Core to use that endpoint

In order to make sure the Seldon Deployments are sending the requests to that endpoint, you will need to make sure
you provide the request logger prefix. In this case you will need the following extra attributes in the Seldon Core
values.yaml:

executor:
requestLogger:
defaultEndpoint: "http://seldon-request-logger.seldon-logs.svc.cluster.local"

It’s important that you make sure it’s on that format, which is http://<LOGGER_SERVICE>.
<LOGGER_NAMESPACE>.svc.cluster.local.

If you prefer to have one request logger per kubernetes namespace set defaultEndpoint: http://
<LOGGER_SERVICE>. (note the trailing dot) - the Seldon Service Orchestrator will then add the namespace where
the Seldon Deployment is running as a suffix.

Overriding Request Logger Endpoint for specific Seldon Deployment

Once you have created the request logger, now you have to make sure your deployments are pointing to the correct
custom request logger. You can set up the custom request logger address by adding the following configuration to
every Seldon Core SeldonDeployment file:

logger:
mode: all
url: http://seldon-request-logger.default

The mode configuration can be set to request, response or all.

The url is where this should be logged to. There’s a similar example for KFServing.

Authentication on Elasticsearch

The Seldon Deploy helm values file has two options for connecting to a secured elastic.

One is token-based authentication. Use this if you have an auth token. This is used for openshift cluster logging flavour
of elastic.

The other option is basic authentication.

Elastic can be configured with basic auth. Note this requires an xpack feature.

Similar then needs to be applied for kibana - note the env vars are not quite the same.

And fluentd.

For Deploy this would need secrets in the namespaces seldon-logs (containing elastic and req logger) and seldon-
system (containing Deploy) as Deploy would need to speak to elastic using the secret.

This could look like:

ELASTIC_USER=admin
ELASTIC_PASSWORD=admin

kubectl create secret generic elastic-credentials -n seldon-logs \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \

(continues on next page)

38 Chapter 3. Getting Started

https://github.com/kubeflow/kfserving/blob/fa1e669bcff74ad9ecbcd1d5371818ebf2e00ef8/docs/samples/logger/basic/sklearn-logging.yaml#L9
https://github.com/elastic/helm-charts/issues/771#issuecomment-673674876
https://discuss.elastic.co/t/authentication-for-kibana-unknown-setting-xpack-security-enabled/254434/2
https://github.com/elastic/helm-charts/blob/master/kibana/examples/security/values.yaml
https://github.com/kiwigrid/helm-charts/blob/master/charts/fluentd-elasticsearch/values.yaml#L59

Seldon Deploy

(continued from previous page)

--dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic elastic-credentials -n seldon-system \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \
--dry-run=client -o yaml | kubectl apply -f -

Debugging

Often issues with request logging turn out to be knative or elasticsearch issues. Start by checking knative.

Knative Installation

This section walks through installation of knative for Seldon Deploy.

Knative eventing and serving is used for request logging and for post-predict detector components (outlier, drift,
metrics). More in request logging

Knative serving is also needed for KFServing.

Knative can be installed in other ways - if you have an existing install then just apply steps that customize.

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components and Istio are installed.

Install KNative Serving

Install KNATIVE Serving

KNATIVE_SERVING_URL=https://github.com/knative/serving/releases/download
SERVING_VERSION=v0.18.1
SERVING_BASE_VERSON=v0.18.0

kubectl apply -f ${KNATIVE_SERVING_URL}/${SERVING_VERSION}/serving-crds.yaml
kubectl apply -f ${KNATIVE_SERVING_URL}/${SERVING_VERSION}/serving-core.yaml

kubectl apply -f https://github.com/knative-sandbox/net-istio/releases/download/$
→˓{SERVING_BASE_VERSON}/release.yaml

If you are using seldon core analytics for prometheus (recommended) then for knative metrics add these annotations:

kubectl annotate -n knative-serving service autoscaler prometheus.io/scrape=true
kubectl annotate -n knative-serving service autoscaler prometheus.io/port=9090

kubectl annotate -n knative-serving service activator-service prometheus.io/
→˓scrape=true
kubectl annotate -n knative-serving service activator-service prometheus.io/port=9090

3.7. References 39

https://knative.dev/

Seldon Deploy

Configure Cluster Local Gateway

KNative requires a Cluster Local Gateway to work properly. This can be added to an existing Istio 1.6.x installation
by generating required manifests

cat << EOF > ./local-cluster-gateway.yaml
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:

profile: empty
components:
ingressGateways:

- name: cluster-local-gateway
enabled: true
label:
istio: cluster-local-gateway
app: cluster-local-gateway

k8s:
service:

type: ClusterIP
ports:
- port: 15020
name: status-port

- port: 80
name: http2

- port: 443
name: https

values:
gateways:

istio-ingressgateway:
debug: error

EOF

istioctl manifest generate -f local-cluster-gateway.yaml > manifest.yaml

Note the profile: empty line. This ensures that generated manifest only contain gateway related resources.

Once manifest is generated, inspect them, and then use kubectl to apply them

kubectl apply -f manifest.yaml

The above manifest and istioctl command no longer works with istioctl 1.7. For 1.7 we suggest installing istio
with

cat << EOF > ./local-cluster-gateway.yaml
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:

values:
global:

proxy:
autoInject: disabled

useMCP: false
addonComponents:
pilot:

enabled: true
prometheus:

enabled: false
(continues on next page)

40 Chapter 3. Getting Started

https://knative.dev/docs/install/installing-istio/#updating-your-install-to-use-cluster-local-gateway
https://github.com/istio/istio/issues/27516

Seldon Deploy

(continued from previous page)

components:
ingressGateways:

- name: cluster-local-gateway
enabled: true
label:
istio: cluster-local-gateway
app: cluster-local-gateway

k8s:
service:

type: ClusterIP
ports:
- port: 15020
name: status-port

- port: 80
targetPort: 8080
name: http2

- port: 443
targetPort: 8443
name: https

values:
gateways:

istio-ingressgateway:
debug: error

EOF

./istioctl install -f local-cluster-gateway.yaml

Read more about gateway configuration in Istio’s documentation.

Test Knative Serving

To check installed version of KNative Serving:

kubectl get namespace knative-serving -o 'go-template={{index .metadata.labels
→˓"serving.knative.dev/release"}}'

To verify the install, kubectl apply -f on a file containing the below:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:

name: helloworld-go
namespace: default

spec:
template:
spec:
containers:

- image: gcr.io/knative-samples/helloworld-go
env:
- name: TARGET
value: "Go Sample v1"

If this is applied in the default namespace then do a pod watch in another window (kubectl get pod -n
default -w) curl it with below (else change default to chosen namespace):

3.7. References 41

https://istio.io/latest/docs/setup/install/istioctl/#configure-gateways

Seldon Deploy

kubectl run --quiet=true -it --rm curl --image=radial/busyboxplus:curl --
→˓restart=Never -- \
curl -v -X GET "http://helloworld-go.default.svc.cluster.local"

You should get a successful response and also a pod should come up in default. If you don’t then see note below on
private registries before looking at resources such as seldon and knative slack.

Clean up with kubectl delete -f on the same file as before.

Install KNative Eventing

KNATIVE_EVENTING_URL=https://github.com/knative/eventing/releases/download
EVENTING_VERSION=v0.18.3

kubectl apply --filename ${KNATIVE_EVENTING_URL}/${EVENTING_VERSION}/eventing-crds.
→˓yaml
kubectl apply --filename ${KNATIVE_EVENTING_URL}/${EVENTING_VERSION}/eventing-core.
→˓yaml

kubectl apply --filename ${KNATIVE_EVENTING_URL}/${EVENTING_VERSION}/in-memory-
→˓channel.yaml
kubectl apply --filename ${KNATIVE_EVENTING_URL}/${EVENTING_VERSION}/mt-channel-
→˓broker.yaml

kubectl rollout status -n knative-eventing deployment/imc-controller

Configure KNative Eventing broker

Create knative event broker that will handle the logging.

kubectl create -f - <<EOF
apiVersion: eventing.knative.dev/v1
kind: Broker
metadata:

name: default
namespace: seldon-logs

EOF

Test KNative Eventing

To check installed version of KNative Eventing

kubectl get namespace knative-eventing -o 'go-template={{index .metadata.labels
→˓"eventing.knative.dev/release"}}'

To test knative eventing it is easiest to have Seldon fully installed with request logging and a model running.

Make a prediction to a model following one of the seldon core demos. You should see entries under Requests.

If you see entries under requests, you are all good.

If you don’t see entries under requests, first find the request logger pod in the seldon-logs namespace. Tail its logs
(kubectl logs -n seldon-logs <pod-name> -f) and make a request again. Do you see output?

42 Chapter 3. Getting Started

Seldon Deploy

If this doesn’t work then find the pod for the model representing the SeldonDeployment. Tail the logs of the seldon-
container-engine container and make a prediction again.

If the predictions aren’t sending then it could be a problem with the broker url executor.requestLogger.
defaultEndpoint in helm get values -n seldon-system seldon-core) or the broker (kubectl
get broker -n seldon-logs).

If there’s no requests and no obvious problem with the broker transmission then it could be the trigger stage.

First try kubectl get trigger -n seldon-logs to check the trigger status.

If that looks healthy then we need to debug the knative trigger process.

Do a kubectl apply -f to the default namespace on a file containing the below (or change references to
default for a different namespace):

event-display app deploment
apiVersion: apps/v1
kind: Deployment
metadata:

name: event-display
namespace: default

spec:
replicas: 1
selector:
matchLabels: &labels
app: event-display

template:
metadata:
labels: *labels

spec:
containers:

- name: helloworld-python
image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/

→˓event_display

Service that exposes event-display app.
This will be the subscriber for the Trigger
kind: Service
apiVersion: v1
metadata:

name: event-display
namespace: default

spec:
selector:
app: event-display

ports:
- protocol: TCP

port: 80
targetPort: 8080

Trigger to send events to service above
apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

name: event-display
namespace: seldon-logs

spec:
broker: default

(continues on next page)

3.7. References 43

Seldon Deploy

(continued from previous page)

subscriber:
uri: http://event-display.default:80

Now find the event-display pod and tail its logs (kubectl get pod -n default and kubectl logs
<pod_name>). Make a prediction to a model following one of the seldon core demos.

You should see something in the event-display logs. Even an event decoding error message is good.

To eliminate any seldon components, we can send an event directly to the broker. There is an example in the knative
docs

What we’ve done now corresponds to the knative eventing hello-world. Nothing at all in the event-display pod means
knative eventing is not working.

Occasionally you see a RevisionMissing status on the ksvc and a ContainerCreating message on its
Revision. If this happens check the Deployment and if no issues then delete and try again.

Hopefully you’ve got things working before here. If not then check the pods in the knative-eventing namespace.
If that doesn’t help find the problem then the knative slack and/or seldon slack can help with further debugging.

Knative with a private registry

By default knative assumes the image registries used for images will be public. If you use a company-internal private
one, then you have to configure that.

There is a property called queueSidecarImage in the config-deployment configmap in the knative-serving namespace.
This needs to be edited to point to your registry

Tag resolution confiuration can also be required. We suggest to try the above first. The knative docs provide more
details on tag resolution

Elasticsearch Installation

Installing flavours of elasticsearch.

If you do not already have elasticsearch then we suggest to use the OpenDistro version of elasticsearch.

If you prefer the version of elasticsearch distributed by elastic then instructions for this are also below.

Elasticsearch by OpenDistro

Installation for OpenDistro elasticsearch.

OpenDistro Elasticsearch Installation

Initial Configuration

Copy default fluentd and opendistro helm config files (and edit if desired)

cp ./seldon-deploy-install/prerequisites-setup/efk/fluentd-values.yaml fluentd-values.
→˓yaml
cp ./seldon-deploy-install/prerequisites-setup/efk/values-opendistro.yaml values-
→˓opendistro.yaml (continues on next page)

44 Chapter 3. Getting Started

https://knative.dev/docs/eventing/samples/helloworld/helloworld-python/#send-cloudevent-to-the-broker
https://knative.dev/docs/eventing/samples/helloworld/helloworld-python/#send-cloudevent-to-the-broker
https://knative.dev/docs/eventing/samples/helloworld/
https://github.com/knative/serving/issues/5126#issuecomment-548720567
https://github.com/knative/serving/issues/5126#issuecomment-548720567
https://knative.dev/docs/serving/tag-resolution/
https://knative.dev/docs/serving/tag-resolution/

Seldon Deploy

(continued from previous page)

Ensure Required Namespaces Exist

We’ll be installing in the seldon-logs namespace. We’ll also set up some config in the seldon-system names-
pace.

kubectl create namespace seldon-logs || echo "namespace seldon-logs exists"
kubectl create namespace seldon-system || echo "namespace seldon-system exists"

Create Secrets

Auth is required for OpenDistro. That means components interacting with it will need secrets, including Seldon
Deploy.

We’ll need secrets in the seldon-logs namespace (for a request logger) and seldon-system for deploy.

Using the defaults we can set:

ELASTIC_USER=admin
ELASTIC_PASSWORD=admin

kubectl create secret generic elastic-credentials -n seldon-logs \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \
--dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic elastic-credentials -n seldon-system \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \
--dry-run=client -o yaml | kubectl apply -f -

Using alternative creds is covered in the docs for opendistro and can be set on kibana and in the fluentd values file.

Elasticsearch

Install Elasticsearch and Kibana using the following script

git clone https://github.com/opendistro-for-elasticsearch/opendistro-build
cd opendistro-build/helm/opendistro-es/
git fetch --all --tags
git checkout tags/v1.13.2
helm package .
helm upgrade --install elasticsearch opendistro-es-1.13.2.tgz --namespace=seldon-logs
→˓--values=../../../values-opendistro.yaml

You can wait for it to come up with

kubectl rollout status -n seldon-logs deployment/elasticsearch-opendistro-es-kibana

3.7. References 45

https://aws.amazon.com/blogs/opensource/change-passwords-open-distro-for-elasticsearch/
https://github.com/opendistro-for-elasticsearch/opendistro-build/issues/558
https://github.com/opendistro-for-elasticsearch/opendistro-build/blob/master/helm/opendistro-es/templates/kibana/kibana-deployment.yaml#L58

Seldon Deploy

Fluentd

Install fluentd with this:

helm upgrade --install fluentd fluentd-elasticsearch --version 9.6.2 --
→˓namespace=seldon-logs --values=../../../fluentd-values.yaml --repo https://kiwigrid.
→˓github.io

Note that if alternative creds are used then these need to be set in the fluentd helm values file.

Configure Seldon Deploy

Following helm values needs to be set in deploy-values.yaml when using Elastisearch by OpenDistro:

requestLogger:
create: true
elasticsearch:
host: elasticsearch-opendistro-es-client-service.seldon-logs.svc.cluster.local
port: "9200"
protocol: https

elasticsearch:
basicAuth: true
url: https://elasticsearch-opendistro-es-client-service.seldon-logs.svc.cluster.

→˓local:9200

Configure EFK Ingress (Optional)

Kibana

It can be useful to access kibana’s UI without having to port-forward.

To do this create the following VirtualService for Kibana to enable its ingress

cat << EOF > kibana-vs.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: kibana
namespace: seldon-logs

spec:
gateways:
- istio-system/seldon-gateway

hosts:
- '*'

http:
- match:

- uri:
prefix: /kibana/

rewrite:
uri: /

route:
- destination:

host: elasticsearch-opendistro-es-kibana-svc

(continues on next page)

46 Chapter 3. Getting Started

Seldon Deploy

(continued from previous page)

port:
number: 443

EOF

kubectl apply -f kibana-vs.yaml

Verify Install

You can go to /kibana/ from the istio ingress endpoint (the external ip/host of istio-ingressgateway in istio-system
namespace).

Or you can verify elastic direct. First port-forward:

kubectl port-forward -n seldon-logs svc/elasticsearch-opendistro-es-client-service
→˓9200

Then verify with below, using your user and pass (a browser can also be used).

curl -XGET -k https://localhost:9200 -u admin:admin

Elasticsearch by Elastic

Installation for elastic-provided elasticsearch.

Elasticsearch Installation

Initial Configuration

Copy default fluentd-config (and edit as required)

cp ./seldon-deploy-install/prerequisites-setup/efk/fluentd-values.yaml fluentd-values.
→˓yaml

Elasticsearch

Install Elasticsearch using the following script

kubectl create namespace seldon-logs || echo "namespace seldon-logs exists"

helm upgrade --install elasticsearch elasticsearch \
--version 7.6.0 \
--namespace seldon-logs \
--set service.type=ClusterIP \
--set antiAffinity="soft" \
--repo https://helm.elastic.co \
--set image=docker.elastic.co/elasticsearch/elasticsearch-oss

kubectl rollout status statefulset/elasticsearch-master -n seldon-logs

3.7. References 47

Seldon Deploy

Fluentd and Kibana

If not using auth (not by default) then set elasticsearch.auth.enabled to false in the fluentd values file.

Install fluentd and kibana using the following script

helm upgrade --install fluentd fluentd-elasticsearch \
--version 8.0.0 \
--namespace seldon-logs -f fluentd-values.yaml \
--repo https://kiwigrid.github.io

helm upgrade --install kibana kibana \
--version 7.6.0 \
--namespace seldon-logs \
--set service.type=ClusterIP \
--repo https://helm.elastic.co \
--set image=docker.elastic.co/kibana/kibana-oss

kubectl rollout status deployment/kibana-kibana -n seldon-logs

Configure Seldon Deploy

Following helm values needs to be set in deploy-values.yaml when using Elastisearch by Elastic:

requestLogger:
create: true
elasticsearch:
host: elasticsearch-master.seldon-logs.svc.cluster.local
port: "9200"
protocol: http

elasticsearch:
basicAuth: false
url: http://elasticsearch-master.seldon-logs.svc.cluster.local:9200

Auth is not required for the elastic-provided version of elasticsearch. The elasticsearch.basicAuth option in
the Seldon Deploy helm chart can be set to false, as illustrated above.

Authentication

If authentication is required to access your ElasticSearch cluster, you will need to configure your credentials so that
Seldon can access it. To do this, you can provide your ElasticSearch user and password through a secret. By default,
Seldon will look for a secret named elastic-credentials.

As an example, if we assume that ElasticSearch can be accessed using the admin / admin credentials, we could
create the relevant secrets as:

ELASTIC_USER=admin
ELASTIC_PASSWORD=admin

kubectl create secret generic elastic-credentials -n seldon-logs \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \
--dry-run=client -o yaml | kubectl apply -f -

(continues on next page)

48 Chapter 3. Getting Started

Seldon Deploy

(continued from previous page)

kubectl create secret generic elastic-credentials -n seldon-system \
--from-literal=username="${ELASTIC_USER}" \
--from-literal=password="${ELASTIC_PASSWORD}" \
--dry-run=client -o yaml | kubectl apply -f -

Configure EFK Ingress (Optional)

Kibana

It can be useful to access kibana’s UI without having to port-forward.

To expose kibana externally it needs to have its own path. This means a custom values file:

extraEnvs:
- name: SERVER_BASEPATH
value: "/kibana"

That should be referenced with -f as an additional parameter on the previous helm install command.

Then create a following VirtualService for Kibana to enable its ingress

cat << EOF > kibana-vs.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:

name: kibana
namespace: seldon-logs

spec:
gateways:
- istio-system/seldon-gateway
hosts:
- '*'
http:
- match:
- uri:

prefix: /kibana/
rewrite:

uri: /
route:
- destination:

host: kibana-kibana
port:
number: 5601

EOF

Kubectl apply -f kibana-vs.yaml

3.7. References 49

Seldon Deploy

GitOps

GitOps setup with ArgoCD

This page provides a detailed overview of how to set up the GitOps functionality for Seldon Deploy. Setting up GitOps
is highly recommended.

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

Seldon Deploy leverages ArgoCD to implement GitOps in your cluster. You can read more about Seldon Deploy’s
GitOps integration in the architecture and operation sections.

This documentation page will walk you through the different steps required to set up ArgoCD and GitOps in your
cluster. Note that this guide assumes a fresh cluster without ArgoCD, thus it must only be treated as a general reference.
Feel free to adapt these steps to your particular infrastructure.

ArgoCD Installation

Since this guide assumes that you currently don’t have ArgoCD installed in your cluster, the first step will be on
installing and configuring it. You can treat these steps as a quick way to get started with ArgoCD. Therefore, it is
highly encouraged to check ArgoCD’s official documentation for further configuration.

To install and configure ArgoCD we will first install their official K8s manifest into our cluster. For version v1.6.2
of ArgoCD, this can be done as follows:

ARGOCD_VERSION=v1.6.2

kubectl create namespace argocd || echo "namespace exist"
kubectl apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/$
→˓{ARGOCD_VERSION}/manifests/install.yaml

kubectl rollout status deployment/argocd-application-controller -n argocd
kubectl rollout status deployment/argocd-repo-server -n argocd
kubectl rollout status deployment/argocd-server -n argocd
kubectl rollout status deployment/argocd-redis -n argocd
kubectl rollout status deployment/argocd-dex-server -n argocd

ArgoCD Configuration

Now that we have ArgoCD installed in our cluster, the next step will involve configuring it so that:

• The admin user credentials get changed.

• SSL termination is disabled in ArgoCD.

• ArgoCD gets exposed under the /argocd/ path of our load balancer.

Note that these steps must be treated just as a guideline. Therefore, you may need to adapt them to your infrastructure.
For more information on ArgoCD’s configuration, we suggest checking ArgoCD’s official documentation.

50 Chapter 3. Getting Started

https://argoproj.github.io/argo-cd/
https://argoproj.github.io/argo-cd/getting_started/
https://argoproj.github.io/argo-cd/getting_started/

Seldon Deploy

Admin user and password

Upon the initial installation of ArgoCD, it is recommended to change its user and password. This guideline will
show how to change ArgoCD’s default admin user as an example. However, it’s also possible to hook ArgoCD to a
centralised OIDC provider. This could be the same as Seldon Deploy’s OIDC provider, providing a Single Sign-On
across your entire stack.

The following command will assume that we want to set the admin credentials as admin // $ARGOCDINITIALPASS.
With this in mind, we can set those credentials as:

ARGOCDINITIALPASS=12341234
kubectl patch secret \

-n argocd argocd-secret \
-p '{"stringData": { "admin.password": "'$(htpasswd -bnBC 10 "" $

→˓{ARGOCDINITIALPASS} | tr -d ':\n')'"}}'

This command requires htpasswd that can be installed on Ubuntu, Debian and Mint systemms with:

sudo apt install apache2-utils

SSL Termination

As a general choice, we recommend to handle SSL termination at the ingress / load balancer level. This simplifies the
components setup within the cluster.

Following this approach, we will need to disable the SSL termination in ArgoCD. Otherwise, ArgoCD will expect to
receive SSL traffic by default. To do this, we can ask ArgoCD to run in insecure mode by running the command
below:

kubectl patch deploy argocd-server \
-n argocd \
-p '[{"op": "add", "path": "/spec/template/spec/containers/0/command/-", "value":

→˓"--insecure"}]' \
--type json

Exposing ArgoCD through our ingress

There are different ways to access ArgoCD. However, the most convenient is usually to expose it through our ingress
layer so that it can be accessed as a different subpath (e.g. /argocd/). This will make the ArgoCD API and UI
reachable as http(s)://<load-balancer-domain>/argocd/.

This will need to be configured in a couple of places.

1. On one hand, we need to tell ArgoCD to expect its static assets to be served under the /argocd/ path. This
can be done by running the following command:

kubectl patch deploy argocd-server \
-n argocd \
-p '[{"op": "add", "path": "/spec/template/spec/containers/0/command/-",

→˓"value": "--rootpath"}, {"op": "add", "path": "/spec/template/spec/containers/0/
→˓command/-", "value": "/argocd"}]' \

--type json

3.7. References 51

https://argoproj.github.io/argo-cd/operator-manual/user-management/
https://argoproj.github.io/argo-cd/operator-manual/user-management/

Seldon Deploy

2. On the other hand, we will need to create a VirtualService that maps the /argocd/ path to ArgoCD’s
service. Note that this assumes that we are using Istio as an ingress layer. To expose ArgoCD, it should be
enough to apply the following VirtualService resource to our cluster:

cat << EOF > ./argocd-vs.yaml
apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
name: argocd-server
namespace: argocd

spec:
gateways:
- istio-system/seldon-gateway
hosts:
- '*'
http:
- match:

- uri:
prefix: /argocd/

route:
- destination:

host: argocd-server
port:
number: 80

EOF

If we assume that the above has been saved as a file called argocd-vs.yaml, we can then apply it as:

kubectl apply -f argocd-vs.yaml

Accessing ArgoCD

After configuring ArgoCD, we should now be able to reach ArgoCD under:

http(s)://<load-balancer-domain>/argocd/

In a standard setup, you should be able to obtain your load balancer domain by checking the Istio resources created in
your cluster. You can do this as:

ISTIO_INGRESS=$(\
kubectl get svc -n istio-system istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}'\

)
ISTIO_INGRESS+=$(\
kubectl get svc -n istio-system istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].hostname}'\

)

echo $ISTIO_INGRESS

Alternatively, if your ingress layer doesn’t expose an external IP address or domain, it’s also possible to port-forward
a local port into ArgoCD. For example, to map your local localhost:8080 (or localhost:8080/argocd/
if you defined the rootpath above) domain to ArgoCD, you can run:

kubectl port-forward -n argocd svc/argocd-server 8080:80

52 Chapter 3. Getting Started

Seldon Deploy

Once we know our load balancer domain, we can then access ArgoCD through its UI or API. For the latter, we will
leverage ArgoCD’s CLI, called argocd. Below, you can find instructions on how to set up and access both of them.

CLI

UI

ArgoCD ships with a CLI tool called argocd. This tool allows you to interact with ArgoCD from the command line.
The rest of this guide will provide command examples that can be used to configure ArgoCD using their argocd
tool. However, it’s also possible to perform the same actions from the ArgoCD UI.

To use the argocd CLI, we will need to:

1. Install the argocd CLI locally. This can be achieved by running the following commands:

ARGOCD_VERSION=v1.6.2
wget -q -O argocd "https://github.com/argoproj/argo-cd/releases/download/${ARGOCD_
→˓VERSION}/argocd-linux-amd64"
chmod +x ./argocd

2. Authenticate the CLI against our ArgoCD instance. Assuming that our load balancer domain can be found under
$ISTIO_INGRESS, it should be enough to run the command below.

./argocd login \
"$ISTIO_INGRESS:80" \
--username admin \
--password ${ARGOCDINITIALPASS} \
--insecure \
--grpc-web-root-path /argocd

ArgoCD exposes a UI that can be used to configure your GitOps repository. Assuming that you have followed the
ArgoCD setup guidelines above, this UI should be accessible under the /argocd/ path of your load balancer domain.

After accessing the UI, you should be prompted with a login form asking for the admin credentials. You should be
able to access this UI by using ArgoCD’s user / password combination (admin and $ARGOCDINITIALPASS by
default, respectively).

You can learn more about how to navigate ArgoCD’s UI in their documentation.

GitOps for logging components

The request logger is an infrastructure component that runs in the centralised logging namespace (named as
seldon-logs by default). Alongside this, Triggers can also be created for detectors and these tied to particu-
lar models. Thus is good to back them through a GitOps environment.

With this goal in mind, it’s encouraged to create a system-level GitOps environment to track these infrastructure
resources. To do this, you can follow the instructions to create a new GitOps environment, using the seldon-logs
namespace as target. Note that if you’ve configured Seldon Deploy to use a different centralised namespace for
logging, you’ll need to point to that namespace instead.

Once the logging GitOps environment is created, Seldon Deploy should be able to pick it up and use it without any
further configuration.

3.7. References 53

https://argoproj.github.io/argo-cd/

Seldon Deploy

GitOps environment creation

Now that ArgoCD has been installed and configured, we can then proceed to create a new GitOps environment. This
environment will provide a Kubernetes namespace to deploy our machine learning models, which is backed by a
GitOps repository.

This section will walk you through how to create a new GitOps-tracked environment for a namespace with name
$namespace. The GitOps repository which will act as the source of truth for this environment will exist under
$GIT_REPO_URL. Note that $GIT_REPO_URL should not contain the http or https protocol schema.

Git Repository

The only requirements for the Git repository are:

• It contains a non-empty folder named as the namespace (i.e. ./$namespace).

• It is accessible from within the cluster. This can be verified using this one-liner command:

kubectl run --quiet=true -it --rm git-clone --image=radial/busyboxplus:git --
→˓restart=Never -- git clone https://$GIT_USER:$GIT_TOKEN@$GIT_REPO_URL

ArgoCD Resources

In order for ArgoCD to keep track of our new environment, it’s necessary to configure a Project and an Application.
These are concepts native to ArgoCD. We suggest checking the ArgoCD official documentation for more information
about them.

ArgoCD projects and applications can be created via the ArgoCD UI, argocd CLI tool and through CRDs. As
declarative approach guarantees best reproducibility this is the approach that we recommend.

We create ArgoCD project by creating the following AppProject resources named argocd-project.yaml

cat << EOF > ./argocd-project.yaml
apiVersion: argoproj.io/v1alpha1
kind: AppProject
metadata:

name: seldon
namespace: argocd

spec:
description: Seldon Deploy Project
sourceRepos:
- https://${GIT_REPO_URL}
destinations:
- namespace: ${namespace}
server: https://kubernetes.default.svc

clusterResourceWhitelist:
- group: '*'
kind: '*'

roles:
- name: seldon-admin
policies:
- p, proj:seldon:seldon-admin, applications, get, seldon/*, allow
- p, proj:seldon:seldon-admin, applications, create, seldon/*, allow
- p, proj:seldon:seldon-admin, applications, update, seldon/*, allow
- p, proj:seldon:seldon-admin, applications, delete, seldon/*, allow

(continues on next page)

54 Chapter 3. Getting Started

https://argoproj.github.io/argo-cd/user-guide/projects/
https://argoproj.github.io/argo-cd/operator-manual/declarative-setup/#applications
https://argoproj.github.io/argo-cd/
https://argoproj.github.io/argo-cd/operator-manual/declarative-setup/

Seldon Deploy

(continued from previous page)

- p, proj:seldon:seldon-admin, applications, sync, seldon/*, allow
EOF

kubectl apply -f argocd-project.yaml

Similarly we create the ArgoCD Application resource:

ARGO_APP_NAME=seldon-gitops-"${namespace}"

cat << EOF > ./argocd-application.yaml
apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:

name: ${ARGO_APP_NAME}
namespace: argocd

spec:
project: seldon
destination:
namespace: ${namespace}
server: https://kubernetes.default.svc

source:
directory:

recurse: true
path: ${namespace}
repoURL: https://${GIT_REPO_URL}

syncPolicy:
automated: {}

EOF

kubectl apply -f argocd-application.yaml

Kubernetes Model Namespace

To use a namespace with GitOps, you will need to annotate it with the Git repository URL (using key git-repo)
and enable it for GitOps access by adding the git-repo label. As an example, to enable a namespace named
$namespace, you could run the following commands:

kubectl create ns $namespace || echo "namespace $namespace already exists"

kubectl label ns $namespace seldon.restricted=false --overwrite=true
kubectl label namespace $namespace seldon.gitops=enabled --overwrite=true
kubectl annotate namespace $namespace git-repo="https://${GIT_REPO_URL}" --
→˓overwrite=true

Note: If your ArgoCD application does not follow seldon-gitops-${namespace} naming convention you
can label the namespace accordingly

kubectl label namespace $namespace argocdapp=${ARGO_APP_NAME} \--overwrite=true

If you intend to use Batch jobs on the namespace then you’ll need additional config. You can visit the Argo section of
the docs for more details.

3.7. References 55

Seldon Deploy

Configuring Git Credentials

The last required step is to provide the relevant Git credentials to access our GitOps repository. Note that these
credentials need to be set at both the ArgoCD and Seldon Deploy level.

ArgoCD

You can configure your GitOps repository access in ArgoCD using either SSH or user / password credentials. These
credentials can be provided using the argocd CLI tool, or directly through the ArgoCD UI.

SSH (CLI)

User / Password (CLI)

UI

Assuming that the argocd CLI tool is already authenticated, and that $GIT_SSH_PATH and $GIT_TOKEN repre-
sent our GitOps repository user and password, we should be able to run:

./argocd repo add "ssh://${GIT_REPO_URL}" \
--ssh-private-key-path ${GIT_SSH_PATH} \
--upsert

Assuming that the argocd CLI tool has already been authenticated, and that ${GIT_USER} and ${GIT_TOKEN}
represent our GitOps repository user and password, we should be able to run:

./argocd repo add "https://${GIT_REPO_URL}" \
--username ${GIT_USER} \
--password ${GIT_TOKEN} \
--upsert

ArgoCD exposes a UI that can be used to configure your GitOps repository. Assuming that you have followed the
ArgoCD setup guidelines above, this UI should be accessible under the /argocd path. You should be able to access
this UI by using ArgoCD’s user / password combination (admin and 12341234 by default, respectively).

You can learn more about how to configure repositories using ArgoCD’s UI in their documentation.

Seldon Deploy

Seldon Deploy also requires access to the repository. This access will be used to monitor the status of the current
resources in the cluster, as well as to create new ones.

To configure our Git credentials in Seldon Deploy, we will follow these steps:

1. Create a Kubernetes secret containing our credentials, either as a SSH key or a User / Password combination.
This secret can have any arbitrary name, but must live in the same namespace as Seldon Deploy.

SSH

User / Password

If we assume that our private key is present under $GIT_SSH_PATH, we can create the credentials secret as:

kubectl create secret generic git-creds -n seldon-system \
--from-file ${GIT_SSH_PATH} \
--from-file ${GIT_KNOWN_HOSTS_PATH} \
--from-literal=passphrase="${GIT_SSHKEY_PASSPHRASE}" \

(continues on next page)

56 Chapter 3. Getting Started

https://argoproj.github.io/argo-cd/user-guide/private-repositories/

Seldon Deploy

(continued from previous page)

--from-literal=username="${GIT_USER}" \
--from-literal=email="${GIT_EMAIL}" \
--dry-run=client -o yaml | kubectl apply -f -

Note that the passphrase field can be left empty if they SSH key doesn’t have a passphrase.

We can create the credentials secret using a User / Password combination (or User / Personal Access Token) as:

kubectl create secret generic git-creds -n seldon-system \
--from-literal=username="${GIT_USER}" \
--from-literal=token="${GIT_TOKEN}" \
--from-literal=email="${GIT_EMAIL}" \
--dry-run=client -o yaml | kubectl apply -f -

2. Update Seldon Deploy’s configuration to point to our newly created secret. In particular, we will need to modify
the gitops section of the values of the Seldon Deploy Helm chart. Here, we will need to set the gitops.
argocd.enabled flag to true, and we will point the gitops.git.secret field to the right secret name
(e.g. git-creds if we’ve followed the commands above).

gitops:
git:
secret: git-creds

argocd:
enabled: true

(Optional) Webhooks Configuration

By default, the resource synchronisation against the GitOps repository will happen on a poll basis. That is, Seldon
Deploy will check the repo periodically for updates.

The main caveat of this approach is that there may be a small delay between taking an action and seeing it reflected
in the cluster / UI. To work around this, you can configure a set of webhooks in the cluster in the that will get pinged
everytime there is a change in the cluster. Note that this is an optional step, and its feasibility may depend on your
networking infrastructure and your Git provider.

Hint: If webhooks are not arriving at its destination it may be helpful to enable webhook’s history.

It may be necessary to also select Skip certificate verification option.

You can find instructions below on how to set up these webhooks for common Git providers

GitHub

Bitbucket

First we need to configure the webhook that will be sending updates to the Seldon Deploy endpoint:

whIp=$(kubectl get service seldon-deploy-webhook -o jsonpath='{.status.loadBalancer.
→˓ingress[*].ip}')
curl -u ${GIT_USER}:${GIT_TOKEN} \

-v -H "Content-Type: application/json" \
-d '
{

"name": "web",
"active": true,

(continues on next page)

3.7. References 57

Seldon Deploy

(continued from previous page)

"events": ["*"],
"config": {

"url": "http://${whIp}/api/git-webhook",
"content_type": "json"

}
}' \

https://${GIT_API}/repos/${GIT_USER}/${REPONAME}/hooks

Then we set up the webhook that will be sending the updates to ArgoCD.

curl -u ${GIT_USER}:${GIT_TOKEN} \
-v -H "Content-Type: application/json" \
-d '\
{

"name": "web",
"active": true,
"events": ["*"],
"config": {

"url": "https://${ARGOCDURL}/api/webhook",
"content_type": "json",
"secret": "${ARGOCDINITIALPASS}",
"insecure_ssl": "1"

}
}' \

https://${GIT_API}/repos/${GIT_USER}/${REPONAME}/hooks

First we need to configure the webhook that will be sending updates to the Seldon Deploy endpoint:

whIp=$(kubectl get service seldon-deploy-webhook -o jsonpath='{.status.loadBalancer.
→˓ingress[*].ip}')
curl -u ${GIT_USER}:${GIT_TOKEN} \

-v -H "Content-Type: application/json" \
-d '
{

"description": "web",
"events": ["repo:push"],
"url": "'"http://${whIp}/api/git-webhook"'",
"active": true

}' \
https://${GIT_API}/2.0/repositories/${GIT_USER}/${REPONAME}/hooks

Then we set up the webhook that will be sending the updates to ArgoCD.

curl -u ${GIT_USER}:${GIT_TOKEN} \
-v -H "Content-Type: application/json" \
-d '
{

"description": "web",
"events": ["repo:push"],
"url": "'"https://${ARGOCDURL}/api/webhook"'",
"active": true

}' \
https://${GIT_API}/2.0/repositories/${GIT_USER}/${REPONAME}/hooks

58 Chapter 3. Getting Started

Seldon Deploy

Troubleshooting

You should see one application per gitops namespace when running the below:

kubectl get application -n argocd

You can check the status of an argocd app with kubectl get application -n argocd
seldon-gitops-<namespace_name> -o yaml.

The argocd UI (described above) can also be used to inspect applications. You can trigger a manual sync from there.
If a particular application is missing or in error try running its setup again in order to debug.

Example Script for Namespace Setup

Download installation resources as explained here

Copy the sd-setup directory containing gitops-setup.sh

cp -r ./seldon-deploy-install/sd-setup/ sd-setup/

The gitops-setup.sh is an example script for setting up gitops in the cluster by installing argocd and configuring
namespaces. It can be used for reference.

See the trial installation docs for more on how to run that script. More context is provided in Namespace Setup

Authentication

Configure App Level Authentication for Seldon Deploy

App Level Authentication

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

Seldon Deploy can be setup with an app level authentication with an OIDC provider using the auth code flow. This
would be particularly useful when a gateway level authentication is not setup for the kubernetes cluster.

This feature can be activated by configuring the values file of the Seldon Deploy helm chart. This is done by setting
the variable enableAppAuth boolean to “true” and further providing the OIDC configurations as env variables to
connect to OIDC providers like Keycloak or Dex.

boolean to enable app-level auth (defaults to "false")
enableAppAuth: true

3.7. References 59

http://gitops-setup.sh

Seldon Deploy

Add config / env variables

Before we run deploy install using the helm chart, we need to make sure that add the OIDC configuration to the env
section:

env:
OIDC_PROVIDER: ... # oidc providerURL
CLIENT_ID: ... # oidc client ID
CLIENT_SECRET: ... # oidc client secret
REDIRECT_URL: ... # `${oidc_redirect_url}/seldon-deploy/auth/callback`
OIDC_SCOPES: ... # oidc scopes (defaults to "profile email groups")
USERID_CLAIM_KEY: ... # claim to be used as userid (defaults to "preferred_username

→˓")

Hint: Do not forget to run helm upgrade seldon-deploy ... as described on Seldon Deploy configuration
section.

Keycloak reference installation

An OIDC provider is needed to authenticate to. A reference installation of keycloak is included with scripts under the
following directory

seldon-deploy-install/prerequisites-setup/keycloak

However, customisation of created users, passwords and tokens is highly recommended. Following reverence instal-
lation this should be the configuration values:

env:
CLIENT_ID: "deploy-server"
CLIENT_SECRET: "deploy-secret"
OIDC_PROVIDER: "http://${YOUR_INGRESS}/auth/realms/deploy-realm"
REDIRECT_URL: "http://${YOUR_INGRESS}/seldon-deploy/auth/callback"

With Istio ingress may be obtained with

ISTIO_INGRESS=$(kubectl get svc -n istio-system istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
ISTIO_INGRESS+=$(kubectl get svc -n istio-system istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].hostname}')

echo "OIDC_PROVIDER: http://${ISTIO_INGRESS}/auth/realms/deploy-realm"
echo "REDIRECT_URL: http://${ISTIO_INGRESS}/seldon-deploy/auth/callback"

60 Chapter 3. Getting Started

./seldon.html#seldon-deploy-configuration

Seldon Deploy

Groups/LDAP Configuration

Some customers choose to get groups from LDAP. See LDAP section on that.

Identity Brokering

Sometimes there’s an existing identity server that doesn’t support OIDC and instead supports SAML.

Seldon does not support SAML directly but keycloak can be used to broker to a SAML server.

Debugging

There’s some details on debugging the token content in the LDAP section.

Often the issue is the auth configuration rather than Seldon specifically. In those cases it can be useful to connect a
different application that dumps more details.

We provide an example app for debugging purposes. It can be run on the cluster alongside Seldon Deploy.

Or you can edit your Seldon Deploy installation and replace the docker image with that one. To do this, first find the
deployment for Seldon Deploy and find what image it is using:

kubectl get deployment -n seldon-system seldon-deploy -o jsonpath="{..image}"

Then make a note of that and save the note. Next edit the deployment with kubectl edt deployment -n
seldon-system seldon-deploy. Change the image to seldonio/oauth-test-tool:0.1.

Now when you login to Seldon Deploy it will actually login to the test tool. Its pod logs will give more detail about
the login process. After debugging and resolution then the image can be edited back to what it was before.

Minio

This page provides steps for installing minio.

Installation of Minio

We suggest to install with the minio helm chart.

MINIOUSER=minioadmin
MINIOPASSWORD=minioadmin

kubectl create ns minio-system
helm repo add minio https://helm.min.io/
helm upgrade --install minio minio/minio \

--set accessKey=${MINIOUSER} \
--set secretKey=${MINIOPASSWORD} \
--namespace minio-system

Finally, we create VirtualService named minio-vs.yaml

3.7. References 61

https://medium.com/keycloak/keycloak-as-an-identity-broker-an-identity-provider-af1b150ea94
https://github.com/SeldonIO/oauth2-test-tool

Seldon Deploy

cat << EOF > ./minio-vs.yaml
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:

name: minio
namespace: minio-system

spec:
gateways:
- istio-system/seldon-gateway

hosts:
- '*'

http:
- match:

- uri:
prefix: /minio/

route:
- destination:

host: minio
port:
number: 9000

EOF

and apply it with

kubectl apply -f minio-vs.yaml

Per Namespace Setup

See the Argo section for additional per-namespace setup for batch jobs. The secret suggested there can also be used
for models.

Verify Install

You can go to /minio/ from the istio ingress endpoint (the external ip/host of istio-ingressgateway in istio-system
namespace) and login with the credentials used above.

Or you can port-forward:

kubectl port-forward -n minio-system svc/minio 9000:9000

Then go to localhost:9000 in the browser.

Argo

This page provides steps for installing argo.

62 Chapter 3. Getting Started

Seldon Deploy

Installation of Argo

We suggest to install argo in line with the argo instructions. At the time of writing these are:

kubectl create namespace argo
kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo-workflows/
→˓stable/manifests/install.yaml

Per Namespace Setup

If you intend to use Batch jobs on the namespace then you’ll need to create a service account for this:

namespace=seldon

kubectl apply -n ${namespace} -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: workflow
rules:
- apiGroups:

- ""
resources:
- pods
verbs:
- "*"

- apiGroups:
- "apps"
resources:
- deployments
verbs:
- "*"

- apiGroups:
- ""
resources:
- pods/log
verbs:
- "*"

- apiGroups:
- machinelearning.seldon.io
resources:
- "*"
verbs:
- "*"

EOF

kubectl create -n ${namespace} serviceaccount workflow

kubectl create rolebinding -n ${namespace} workflow --role=workflow --serviceaccount=$
→˓{namespace}:workflow

And also configure a secret for batch jobs to communicate with S3 or minio (here assumed to be in minio-system
namespace). Batch job processor in Seldon Deploy uses Storage Initializer mechanism similar to one used on the Pre
Packaged model servers.

3.7. References 63

Seldon Deploy

Rclone based storage initializer (default)

Leaving the default helm value for batchjobs.storageInitailizer:

batchjobs:
storageInitializer:
image: seldonio/rclone-storage-initializer:1.9.1

will result in rclone-based storage initializer being used. Rclone offers a compatibility with over 40 different cloud
storage products and therefore is the default choice.

For the minio installation secret is as follows:

MINIOUSER=minioadmin
MINIOPASSWORD=minioadmin
namespace=seldon

kubectl apply -n ${namespace} -f - <<EOF
apiVersion: v1
kind: Secret
metadata:

name: seldon-job-secret
type: Opaque
stringData:

RCLONE_CONFIG_S3_TYPE: s3
RCLONE_CONFIG_S3_PROVIDER: minio
RCLONE_CONFIG_S3_ENV_AUTH: "false"
RCLONE_CONFIG_S3_ACCESS_KEY_ID: ${MINIOUSER}
RCLONE_CONFIG_S3_SECRET_ACCESS_KEY: ${MINIOPASSWORD}
RCLONE_CONFIG_S3_ENDPOINT: http://minio.minio-system.svc.cluster.local:9000

EOF

Using custom storage initializer

If for some reason you would like to use different storage initializer, e.g. kfserving storage initializer you can set this
by modifying the mentioned deploy-values.yaml:

batchjobs:
storageInitializer:
image: gcr.io/kfserving/storage-initializer:v0.4.0

The corresponding secret would also need to be modified:

MINIOUSER=minioadmin
MINIOPASSWORD=minioadmin
namespace=seldon

kubectl apply -n ${namespace} -f - <<EOF
apiVersion: v1
kind: Secret
metadata:

name: seldon-job-secret
type: Opaque
stringData:

AWS_ACCESS_KEY_ID: ${MINIOUSER}
AWS_SECRET_ACCESS_KEY: ${MINIOPASSWORD}

(continues on next page)

64 Chapter 3. Getting Started

https://github.com/SeldonIO/seldon-core/tree/master/components/rclone-storage-initializer
https://rclone.org/

Seldon Deploy

(continued from previous page)

AWS_ENDPOINT_URL: http://minio.minio-system.svc.cluster.local:9000
USE_SSL: "false"

EOF

Running on GKE or inside Kind cluster

Note, if running inside kind cluster or on GKE one must patch Argo’s config

kubectl patch -n argo configmap workflow-controller-configmap --type merge \
-p '{"data": {"config": "containerRuntimeExecutor: k8sapi"}}'

Verification and Debugging

You can check the argo install by going to the argo UI. First port-forward:

kubectl port-forward -n argo svc/argo-server 2746

Then go to http://localhost:2746/ in the browser.

If argo is setup correctly then you should be able to run the batch demo.

To see running jobs, you can use the argo UI or its CLI, if you install that. You can list jobs in the namespace with
argo list -n <namespace>. An argo get tells you the pod names of the steps.

To see logs for a running job, go to the relevant pod. If you don’t have the argo CLI you can work out the pod name as
there should be a pod in the namespace with a running status and a name similar to the model name.

PostgreSQL Persistence for Model Metadata

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components are installed.

We use PostgreSQL for persisting model metadata information.

Seldon Deploy Configuration

Enabling/disabling the PostgreSQL dependency in Seldon Deploy can be done with setting the following Helm vari-
able - metadata.pg.enabled. If it is set to false Seldon Deploy will not attempt to connect to a PostgreSQL
database, but all model metadata functionality will be unavailable. If metadata.pg.enabled is true, then Sel-
don Deploy will expect a metadata-postgres Kubernetes secret to be present in the namespace where Seldon
Deploy is running. This secret needs to contain the information for connecting to a PostgreSQL database. The structure
of the secret is:

kind: Secret
apiVersion: v1
data:
dbname: the_name_of_the_database_to_use_for_model_metadata

(continues on next page)

3.7. References 65

Seldon Deploy

(continued from previous page)

host: the_database_host
user: the_database_user_to_use_to_authenticate
password: the_database_password_to_use_to_authenticate
port: the_port_the_database_is_exposed_on
sslmode: the_sslmode

Installation

PostgreSQL can be installed in many different ways - using managed solutions by cloud providers, or running it in
Kubernetes.

Bringing your own PostgreSQL

One option is to use PostgreSQL outside of the Kubernetes cluster that runs Seldon Deploy. If you already have a
database you want to use with Seldon Deploy running on prem or in the cloud you can add the connection information
in the metadata-postgres secret in the namespace Seldon Deploy is running like this substituting the values with
the ones of your database:

kubectl create secret generic -n seldon-system metadata-postgres \
--from-literal=user=your_user \
--from-literal=password=your_password \
--from-literal=host=your.postgres.host \
--from-literal=port=5432 \
--from-literal=dbname=metadata \
--from-literal=sslmode=require \
--dry-run=client -o yaml \
| kubectl apply -n seldon-system -f -

In the next sections we explore how you can start using a managed PostgreSQL in AWS and GCP and connect it with
Seldon Deploy.

Amazon RDS

Amazon RDS provides a managed PostgreSQL solution that can be used for Seldon Deploy’s Model Metadata Storage.
For setting up RDS for the first time you can follow the docs here.

Some important point to remember while setting up RDS:

• Make sure the instance is accessible from Seldon Deploy. If Seldon Deploy is not on the same VPC, make sure
the VPC used by RDS has a public subnet as discussed here.

• Make sure the security group used for accessing the RDS instances allow inbound and outbound traffic from
and to Seldon Deploy. Setting up security groups for RDS is discussed here.

Once you have a running PostgreSQL instance, with a database and a user created you can configure Seldon Deploy
by adding the metadata-postgres secret as discussed in the previous section.

To manage backups see the official documentation. Here is more documentation on other best practices around RDS.

66 Chapter 3. Getting Started

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_SettingUp.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Tutorials.WebServerDB.CreateVPC.html#CHAP_Tutorials.WebServerDB.CreateVPC.VPCAndSubnets
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.BackupRestore.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_BestPractices.html

Seldon Deploy

Google SQL

GCP provides a managed PostgreSQL solution that can be used for Seldon Deploy’s Model Metadata Storage. For
setting up Google SQL for the first time you can follow the docs here.

For connection instructions follow the official documentation. Make sure that the instance is accessible from Seldon
Deploy. If using the public IP generated for the instance make sure the network that runs Seldon Deploy is part of the
Cloud SQL authorized networks by following this guide.

Once you have a running PostgreSQL instance, with a database and a user created you can configure Seldon Deploy
by adding the metadata-postgres secret as discussed in the previous section.

Running PostgreSQL in Kubernetes

You can also run PostgreSQL in the Kubernetes cluster that runs Seldon Deploy. We recommend using the Zalando
PostgreSQL operator to manage the PostgreSQL installation and maintenance. The official documentation can be seen
here. Below we show an example deployment of a PostgreSQL cluster:

To install the Zalando operator you can run:

git clone https://github.com/zalando/postgres-operator.git
git checkout v1.6.3 # Use a tag to pin what we are using.
cd postgres-operator
kubectl create namespace postgres || echo "namespace postgres exists"
helm install postgres-operator ./charts/postgres-operator --namespace postgres

If you want to install the operator UI you can do it by following this doc.

To install a minimal PostgreSQL setup you can run:

cat <<EOF | kubectl apply -f -
apiVersion: "acid.zalan.do/v1"
kind: postgresql
metadata:

name: seldon-metadata-storage
namespace: postgres

spec:
teamId: "seldon"
volume:
size: 5Gi

numberOfInstances: 2
users:
seldon: # database owner
- superuser
- createdb

databases:
metadata: seldon # dbname: owner

postgresql:
version: "13"

EOF

For a more complex setup consisting of more users, databases, replicas, etc. please refer to the official documentation
of the operator here.

Once the database instances have been created by the Zalando operator you can create the expected secret using the
auto generated password:

3.7. References 67

https://cloud.google.com/sql/docs/postgres
https://cloud.google.com/sql/docs/postgres/quickstart
https://cloud.google.com/sql/docs/postgres/connect-overview
https://cloud.google.com/sql/docs/postgres/authorize-networks
https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://postgres-operator.readthedocs.io/en/latest/
https://postgres-operator.readthedocs.io/en/latest/quickstart/#deploy-the-operator-ui
https://postgres-operator.readthedocs.io/en/latest/reference/cluster_manifest/

Seldon Deploy

kubectl get secret seldon.seldon-metadata-storage.credentials.postgresql.acid.zalan.
→˓do -n postgres -o 'jsonpath={.data.password}' | base64 -d > db_pass
kubectl create secret generic -n seldon-system metadata-postgres \
--from-literal=user=seldon \
--from-file=password=./db_pass \
--from-literal=host=seldon-metadata-storage.postgres.svc.cluster.local \
--from-literal=port=5432 \
--from-literal=dbname=metadata \
--from-literal=sslmode=require \
--dry-run=client -o yaml \
| kubectl apply -n seldon-system -f -

rm db_pass

Configuring Seldon Deploy

Once you have your PostgreSQL database ready and the secret with credentials ready add to deploy-values.
yaml following:

metadata:
pg:
enabled: true
secret: metadata-postgres

Production operations on self-managed PostgreSQL

One of drawbacks of using self-hosted PostgreSQL rather than a managed solution is that you will need to handle
operating the PostgreSQL cluster. Here is a list of some resources for best practices and how to handle some operations:

• Monitoring - deploying postgres exporter and hooking it up with your Prometheus monitoring solution is a
common way of getting continuous monitoring of the instances.

• Backups - the Zalando operator provides setup of periodic backups in s3 compatible storage
- https://postgres-operator.readthedocs.io/en/latest/administrator/#wal-archiving-and-physical-basebackups It
also documents restoring state from backups - https://postgres-operator.readthedocs.io/en/latest/administrator/
#restoring-physical-backups. We strongly recommend setting backups if self-hosting PostgreSQL.

• Version update - Zalando support cloning and in-place version updates - https://postgres-operator.readthedocs.
io/en/latest/administrator/#minor-and-major-version-upgrade

• Increase storage size - https://postgres-operator.readthedocs.io/en/latest/user/#increase-volume-size

Authorization

Configure Open Policy Agent Authorization for Seldon Deploy

Authorization is an optional part of the platform which can be enabled or disabled based on your requirements.

68 Chapter 3. Getting Started

https://github.com/prometheus-community/helm-charts/tree/main/charts/prometheus-postgres-exporter
https://postgres-operator.readthedocs.io/en/latest/administrator/#wal-archiving-and-physical-basebackups
https://postgres-operator.readthedocs.io/en/latest/administrator/#restoring-physical-backups
https://postgres-operator.readthedocs.io/en/latest/administrator/#restoring-physical-backups
https://postgres-operator.readthedocs.io/en/latest/administrator/#minor-and-major-version-upgrade
https://postgres-operator.readthedocs.io/en/latest/administrator/#minor-and-major-version-upgrade
https://postgres-operator.readthedocs.io/en/latest/user/#increase-volume-size

Seldon Deploy

Using namespace labels

Namespace labels can be used to authorize access to namespaced resources. For more details see the docs.

Setting Up Open Policy Agent authorization in Deploy

OPA authorization is experimental. To enable OPA authorization in Deploy the following values must be set in the
Deploy Helm chart:

rbac:
opa:
enabled: true
configMap: seldon-deploy-policies # default to this, change only if you want to

→˓use another config map.
projectAuthEnabled: true # enable if you want to authorize project based

→˓resources (models)

This will tell Deploy to load the OPA policies stored in the given rbac.opa.configMap and use them to authorize
requests.

Some important considerations when enabling OPA authorization:

• If the specified config map does not exist, Deploy will not start.

• If the config map does not contain policies, authorization requests will default to denying access.

For a detailed explanation of the schema of the policies, how to set up the config map, and how to migrate from
namespace labels authorization to OPA authorization follow the policy management guide.

Note: rbac.opa.projectAuthEnabled requires the Model Catalog to be enabled as well since it authorizes
resources in there, or resources containing models (deployments). To enable it follow the postgres setup guide.

KFserving Installation

This section will walk you through installation procedure of KFserving such that it is ready to be used with Seldon
Deploy.

Important: Before starting the installation procedure, please download installation resources as explained here and
make sure that all pre-requisites are satisfied.

This page also assumes that main Seldon components and Istio are installed.

Install KNative Serving

Knative Serving is required for KFServing. See Knative section for steps.

3.7. References 69

https://github.com/kubeflow/kfserving

Seldon Deploy

Install KFServing

Clone KFserving repository and checkout the right branch

KFSERVING_VERSION=v0.4.1
KFSERVING_RESOURCE_DIR=kfserving-${KFSERVING_VERSION}

git -C ${KFSERVING_RESOURCE_DIR} fetch origin || git clone https://github.com/
→˓kubeflow/kfserving.git ${KFSERVING_RESOURCE_DIR}
#have to checkout commit rather than tag as v0.4.1 yaml is missing in v0.4.1 tag
git -C ${KFSERVING_RESOURCE_DIR} checkout f253dd529ba25c080ca458d8dc36fd0a19bbd473

Install and configure KFserving

cd ${KFSERVING_RESOURCE_DIR}
kubectl apply --validate=false -f ./install/${KFSERVING_VERSION}/kfserving.yaml ||
→˓true
sleep 3
kubectl patch cm -n kfserving-system inferenceservice-config -p '{"data":{"explainers
→˓":"{\n \"alibi\":{\n \"image\" : \"docker.io/seldonio/kfserving-alibi\",\
→˓n \"defaultImageVersion\" : \"0.4.1\"\n }\n}","ingress":"{\n \
→˓"ingressGateway\" : \"istio-system/seldon-gateway\",\n \"ingressService\" : \
→˓"istio-ingressgateway.istio-system.svc.cluster.local\"\n}","logger":"{\n \"image\
→˓" : \"gcr.io/kfserving/logger:v0.4.0\",\n \"memoryRequest\": \"100Mi\",\n \
→˓"memoryLimit\": \"1Gi\",\n \"cpuRequest\": \"100m\",\n \"cpuLimit\": \"1\",\n
→˓ \"defaultUrl\": \"http://broker-ingress.knative-eventing.svc.cluster.local/
→˓seldon-logs/default\"\n}"}}'
Create self-signed certs because we dont have cert-manager
./hack/self-signed-ca.sh

Configure Seldon Deploy

Enable KFserving in Seldon Deploy by adding a following section to your deploy-values.yaml files

kfserving:
protocol: "http"
enabled: true

Hint: Note that if your istio Gateway uses https then set protocol to https.

3.7.5 Multi-tenant Installation

Guidance for multi-tenant clusters

70 Chapter 3. Getting Started

Seldon Deploy

3.7.5.1 Multi-tenant Guidance

We suggest running Seldon Deploy in cluster-wide mode. If the full stack of suggested components is used then this
makes it simpler to scale by adding new namespaces dynamically for new departments/users.

If you are able to use cluster-wide permissions, you don’t need to read this guide. Use one of the other install types.

The below is guidance on restricting the use of cluster-wide permissions.

Optional Components

Istio

Istio currently has very limited support for multi-tenancy.

There are alternative flavours of istio. OpenShift Service Mesh does have some multi-tenancy support.

An alternative is Ambassador, which can be installed namespaced.

If a non-default ingress setup is used then the requestForm and curlForm sections in the values file need to be
configured with templates applicable to the ingress URL rules being used.

Argocd

From our testing, argocd does require read permissions at a cluster-wide level on all objects.

Write permissions can however be entirely namespaced. Using this means configuring roles for each new namespace,
as explained in the Argocd GitHub issue.

Argocd is only required in order to use Gitops. Seldon Deploy can be used without Gitops.

We have a MULTITENANT flag in the deploy config file for a Trial Installation. This is used in the scripts
provided in the download of installation resources.

Included in those scripts is seldon-deploy-install/sd-setup/gitops-setup.sh. The Trial
Installation docs explain how to use it. Some of its steps read the MULTITENANT flag.

If using the Product Installation with gitops then this script should be consulted to adapt the steps for a
multi-tenant cluster. The main differences are:

• The argocd installation is different as it uses different roles from the manifests that Argocd publishes.

• For each new namespace added to gitops, we have to add roles for Argocd to be able to sync it.

• For each new namespace a new instance of Seldon Core is installed, dedicated to that namespace.

• For each new namespace new roles are added for Seldon Deploy to be able to operate on that namespace.

The details of these differences can be found in the script.

3.7. References 71

https://github.com/istio/istio/issues/11977
https://github.com/istio/istio/issues/11977#issuecomment-510174571
https://www.getambassador.io/docs/latest/topics/running/running/#namespaces
https://github.com/argoproj/argo-cd/issues/3191#issuecomment-597573388
https://github.com/argoproj/argo-cd/issues/3191#issuecomment-597573388

Seldon Deploy

Seldon Core

Seldon Core supports a namespaced install with a singleNamespace setting in its helm chart. There is an example
in seldon-deploy-install/sd-setup/gitops-setup.sh.

KFServing

Only cluster-wide is currently supported. Also requires knative.

Minio

We suggest installing with the minio helm chart. By default we setup one instance per cluster but that could be
configured and at the time of writing ClusterRoles are used only on OpenShift

Argo

We suggest using argo workflows default installation which is cluster-wide but namespaced installations are possible.

Note that each Seldon namespace that runs batch jobs would need the ability to start argo workflows. Batch jobs are
optional.

Knative

At the time of writing neither knative serving nor knative eventing seems to officially support multi-tenancy. See
below.

Configuring Seldon Deploy

Some functionality depends on knative. If knative is not used then this affects the request logger configuration. (Not
using knative also means the outlier and drift detector demos won’t work.)

Seldon Core has a default URL that its install instructions point to a knative broker in seldon-logs names-
pace (executor.requestLogger.defaultEndpoint for seldon core). This can be changed to point to
seldon-request-logger.seldon-logs (or your request logger location).

Detector component wizards and the Data Science metrics component wizard do need knative 0.18.

The Seldon Deploy helm chart has a rbac.clusterWide setting. The seldon-deploy-install/
sd-setup/sd-install-default script uses the MULTITENANT flag to set this.

There are two options from here.

72 Chapter 3. Getting Started

https://github.com/SeldonIO/seldon-core/blob/master/notebooks/multiple_operators.ipynb
https://github.com/minio/charts/blob/d6696050d4874248198a65ed2584f87993df0866/minio/templates/clusterroles.yaml
https://argoproj.github.io/argo/installation/
https://github.com/knative/serving/issues/4959
https://github.com/knative/eventing/issues/2191

Seldon Deploy

Option 1 - One Deploy, per-Namespace RBAC

This is reduced RBAC rather than true multi-tenant.

If rbac.readNamespaces is true then a single Deploy instance should be used. This option requires a cluster-level
read role to read namespaces.

When each namespace is added then new roles can be added for that namespace using the
apply-role-namespace.sh or gitops-setup.sh script.

Note that the gitops script restarts Deploy each time a namespace is added.

Option 2 - Deploy Instance Per Namespace

This is full multi-tenant using only namespaced roles.

If rbac.readNamespaces is false then a Deploy per namespace should be used. Each Deploy then looks only at
its own namespace.

The request logger namespace is configurable. This could be a dedicated namespace per Deploy instance or the same
namespace as Deploy.

3.7.6 OpenShift Installation

Installations for OpenShift

3.7.6.1 Red Hat Marketplace Installation

Seldon Deploy is available in Red Hat markeplace with options for trial or purchase.

In Red Hat marketplace installation is via an operator. That operator needs to be installed first. It is installed using the
marketplace tile.

The Red Hat marketplace installation is therefore different to other installations.

The marketplace installation is also different to other openshift installations. This is because all dependencies used in
the installation are versions provided or certified by Red Hat.

To use the Red Hat marketplace installation, first choose the tile in your marketplace-enabled openshift cluster. Then
follow the installation steps

Troubleshooting steps are included at the bottom of the install guide

3.7.6.2 Other OpenShift Installations

Red Hat marketplace is not the only way to install on OpenShift. Each of the components can be installed on OpenShift
in essentially the usual way. You are likely to hit errors such as:

spec.containers[0].securityContext.runAsUser: Invalid value: 65534: must be in the
→˓ranges: [1000620000, 1000629999]

These can be addressed by adding security context contstraints.

For example, if you hit this with seldon-core-analytics in the seldon-system namespace then run:

3.7. References 73

https://marketplace.redhat.com/en-us/products/seldon-deploy
https://github.com/seldonio/seldon-deploy-operator
https://marketplace.redhat.com/en-us/products/seldon-deploy
https://docs.google.com/document/d/1a_KHXZI4H_2-CdJl89ejB_zGNsq_gCDDmD6jMCsF3gc/edit
https://docs.google.com/document/d/1a_KHXZI4H_2-CdJl89ejB_zGNsq_gCDDmD6jMCsF3gc/edit
https://github.com/kubeflow/kfserving/blob/0d0fee523824a653c290b4ba6dff60f327479a48/docs/OPENSHIFT_GUIDE.md#2-add-security-context-constraint-scc

Seldon Deploy

oc adm policy add-scc-to-group anyuid system:serviceaccounts:seldon-system

And similarly for kfserving and others.

This kind of OpenShift installation is not documented in detail but is not fundamentally different from other installs.
Consult the docs of the providers of individual components and contact seldon in the case of issues.

3.7.7 Installation Types

Customers can install in multiple ways and need to choose when to use a Trial install or a Production install. So we
need to ask:

• What is the difference between the Trial and Production Installations?

• Can a Trial setup not be used for Production?

Let’s answer these questions.

3.7.7.1 Trial vs Production Install

The trial install is really a scripted installer that installs all components. Many organisations prefer to install each
component individually (which we call the Production/Modular Install approach). The reasons are:

• Many organisations have existing installs for oidc/identity, elastic and sometimes other tools.

• Sometimes access to dockerhub and other public hosting is blocked, meaning each image has to be copied and
checked in the org’s hosting.

• The trial install is opinionated about versions - sometimes organisations have approved or preferred versions.

• The trial install makes assumptions about volume sizes and resource allocations.

• The trial install includes some components which are optional.

• The trial setup for https uses self-signed certs and many organisations have certs that they prefer to use.

• The gitops part of the trial install is optional but if used it assumes public GitHub.

The trial install can certainly be used at scale and is supported. It is just not customised to the organisation or the use
case.

3.7.7.2 Easiest Ways to Get Started

The KIND setup is very quick to get running. It does not require a cloud provider account or any git repo access.

The next easiest option is the trial install. We suggest to setup without gitops first and then add gitops after (the trial
setup has gitops as a separate script).

If moving to a production installation we suggest to add components progressively. In a minimal setup deploy can be
run without auth or gitops and this helps simplify initial configuration so that each step can be verified. Our docs also
include verification and troubleshooting steps for each component.

74 Chapter 3. Getting Started

https://github.com/kubeflow/kfserving/blob/0d0fee523824a653c290b4ba6dff60f327479a48/docs/OPENSHIFT_GUIDE.md#2-add-security-context-constraint-scc

Seldon Deploy

3.7.7.3 What if I also want an ML training platform?

Seldon tools can work with many ways of training models. Some users choose to train models in CI systems or
notebooks. There’s also a range of ML training platforms such as kubeflow or mlflow.

We have a special relationship with kubeflow as major contributors. We see many customers interested in kubeflow so
we provide an install option that includes kubeflow.

Other platforms can certainly be used. Seldon Deploy can work with any way of building and installing Seldon core
models. Seldon core users make use of a wide range of platforms, including cloud provider offerings like sagemaker,
as well as open source tools like kubeflow.

3.7.7.4 How to Size a Cluster?

The default install makes sizing assumptions for each of the components. But sizing varies with use.

Some customers will make more requests and put more load on elasticsearch. Others will have more users logged in
viewing monitoring, which will mean more prometheus queries.

Sizes can be adjusted with kubernetes. Even with the trial install, the scripts are provided and resource values can be
adjusted and reapplied. If cluster limits are reached then with Kubernetes nodes can be added to the cluster while it is
running.

3.7. References 75

https://docs.google.com/spreadsheets/d/1hupIYjj_mzLEdB2fCeNUfaAOdddHUEbmTaPFjtJOB18/edit?usp=sharing

Seldon Deploy

76 Chapter 3. Getting Started

CHAPTER

FOUR

PRODUCT TOUR

Walkthrough of Seldon Deploy features

A tour of Seldon Deploy features.

4.1 Deployment Dashboard

Understand the running machine learning model and do core operations

Deployment Details provides a summary for a model.

The page also provides a starting point for inspecting and performing actions on the deployment.

The main tile shows the model/models in the deployment. It has a drop-down action menu from which the deployments
full descriptor or audit log (see GitOps under Deployments by Namespace) can be accessed, or the model can
be updated (using one of the Rollout Strategies) or deleted.

77

Seldon Deploy

4.1.1 Request Monitoring

The deployment dashboard view includes request monitoring panels to view real-time predictions metrics

These show a summary of traffic going through the model, including request rate, indicators of request success/failure
(based on status code) and latency.

4.1.2 Distributions Monitoring

It is a vital aspect of model monitoring cycle to understand if the deployed model has the desired prediction character-
istics during different times and for different cohorts. Distributions monitoring dashboard provides an ability to view
the statistics and distributions of features and predictions made by your model between any given time.

78 Chapter 4. Product Tour

Seldon Deploy

This feature also enables you to draw comparisons between the model predictions for different feature combinations,
cohorts and/or time slices by choosing appropriate filters.

4.1. Deployment Dashboard 79

Seldon Deploy

Relevant Demos

• Seldon Core Deployment Demo

• Inference Service Deployment Demo

4.1.3 Request Logs

Requests can be made using the prediction or load test options in the UI or an authorised request directly to the model.

If the model is a SeldonDeployment then we step into the request in the request log page:

See the architecture sections for more on the Seldon Core use of the EFK stack.

80 Chapter 4. Product Tour

Seldon Deploy

4.1.4 Requests to Models

Requests can be made using the user interface via different options.

4.1.4.1 Make a prediction

The prediction can be made from the UI directly by pasting or uploading content. The response is then shown on the
screen.

Here the path to model is displayed and an option is provided to export a curl command for manual requests.

SeldonDeployment models default to the Seldon protocol and URL form. Alternatively, the tensorflow protocol can be
used and then Deploy will infer a tensorflow URL. With Seldon the model name needs to be specified as a parameter
in the manifest. Content of tensorflow requests is different as explained in a seldon core notebook.

4.1. Deployment Dashboard 81

https://github.com/SeldonIO/seldon-core/blob/f182052cda260fe2c2d27bf0a5b07f455b422344/servers/tfserving/samples/halfplustwo_rest.yaml#L15
https://github.com/SeldonIO/seldon-core/blob/f182052cda260fe2c2d27bf0a5b07f455b422344/servers/tfserving/samples/halfplustwo_rest.yaml#L15
https://github.com/SeldonIO/seldon-core/blob/14c1b09283f090afe7f101fcd92d37add4b91ef4/notebooks/protocol_examples.ipynb#L271

Seldon Deploy

4.1.4.2 Load Test

This initiates a loadtest, which in the background is implemented using hey and exposes the same options as that tool

The load test runs inside the cluster so can take time to be provisioned.

4.2 Deployment Wizard

Create new deployments with simple user-friendly wizards

To simplify the creation of SeldonDeployment and KFService manifests, Seldon Deploy provides a Create button:

This launches a wizard to step through simple manifest creation. The wizard will include options to choose toolkit
(e.g. tensorflow) and location of the model file (pyton pickle).

For more on how the location is specified, see the Seldon Core or the KFServing examples

82 Chapter 4. Product Tour

https://github.com/rakyll/hey
https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html
https://github.com/kubeflow/kfserving/tree/master/docs/samples

Seldon Deploy

4.2.1 Seldon Deployment Wizard

The SeldonDeployment wizard is used if the user chooses a KFService after using the Create button

This differs from the KFServing wizard in its autoscaling options. If enabled (disabled by default), the SeldonDeploy-
ment options are for the HorizontalPodAutoscaler. This allows for scaling up and down pod numbers based on e.g.
cpu utilisation.

4.2.2 Kubeflow Inference Service Wizard

The KFService wizard is used if the user chooses a KFService after using the Create button

4.2. Deployment Wizard 83

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Seldon Deploy

This differs from the SeldonDeployment wizard in its autoscaling options. A minimum and maximum number of pods
can be set. This is in accordance with KFServing’s scaling based on knative, in response to the rate of requests.

4.3 Model Explanations

Understand why models give particular predictions

Model explanations allow you to understand why a machine learning model gave a particular predictions. Seldon
Deploy allows you to use Black Box Model Explainers that can be used on models built using any technology.

4.3.1 Available Methods

Seldon Deploy supports a subset of the methods currently available in Alibi for both Seldon Core and KFServing
deployments. Find documentation on Anchor explanation algorithm and read about creating your custom explainer

Explanation Method Seldon Core KFServing Alibi Docs
Anchor Tabular Example Example Docs
Anchor Text Example Example Docs
Anchor Images Example Example Docs

4.3.1.1 Tabular Data

Explainer model classifier with tabular features

For explanations for tabular datasets predictions can be explained using techniques such as Anchors Tabular to provide
an understanding of the features the model is using to make it prediction.

We provide an anchor tabular explainer demo with Seldon Core.

Details about the methodology can be found in the alibi documentation

84 Chapter 4. Product Tour

https://github.com/kubeflow/kfserving/tree/master/docs/samples/autoscaling
https://docs.seldon.io/projects/alibi/en/latest/methods/Anchors.html#Anchors
https://docs.seldon.io/projects/seldon-core/en/latest/analytics/explainers.html#creating-your-explainer
https://docs.seldon.io/projects/alibi/en/latest/methods/Anchors.html#id3
https://docs.seldon.io/projects/alibi/en/latest/methods/Anchors.html#id2
https://docs.seldon.io/projects/alibi/en/latest/methods/Anchors.html#id5
https://github.com/SeldonIO/alibi/blob/master/examples/anchor_tabular_adult.ipynb

Seldon Deploy

4.3.1.2 Text Data

Explain models whose input is textual

A good way to see text expalantions in Deploy is to take the movie review example from the Seldon Core documenta-
tion. The example there makes the request using the seldon client but it can also be made from the Seldon Deploy UI
with the following JSON:

{
"data": {
"names": ["Text review"],
"ndarray":
["this film has bad actors"]

}
}

The Seldon Deploy UI can then show a visual representation of the explanation:

This clearly highlights that the word ‘bad’ is considered negative and that influenced the classification of the review
as negative.

We provide an anchor text explainer demo with Seldon Core.

More can be seen about the methodology in the alibi documentation

4.3. Model Explanations 85

https://docs.seldon.io/projects/seldon-core/en/latest/examples/explainer_examples.html#Movie-Sentiment-Model
https://docs.seldon.io/projects/seldon-core/en/latest/examples/explainer_examples.html#Movie-Sentiment-Model
https://github.com/SeldonIO/alibi/blob/master/examples/anchor_text_movie.ipynb

Seldon Deploy

4.3.1.3 Image Data

Explain image based classifiers

For explanations for image datasets predictions can be explained using techniques such as Anchors Image to provide
an understanding of the segments of the image that leads to a specific prediction.

Details about the methodology can be found in the alibi documentation

4.4 Rollout Strategies

Rollout strategies for ML Models

The typical rollout strategy for kubernetes is a rolling update, where traffic is moved over from a live version to a new
version when the new version is ready. For Machine Learning it is common to perform more complex rollouts where
traffic is split between versions of a model in a customized way.

4.4.1 Canary

With a canary rollout traffic is split between a main model, which receives a majority of traffic, and a new version,
which is given a fraction of traffic until it is decided whether to promote the model. The features for this can be
seen in full in the Demos section of the documentation under Deploying, Load Testing and Canarying
Seldon Core Servers. The key features in particular are:

1. A wizard to add a canary:

86 Chapter 4. Product Tour

https://github.com/SeldonIO/alibi/blob/master/examples/anchor_image_imagenet.ipynb

Seldon Deploy

1. Visualizing metrics for both default and canary models:

1. Promotion of the Canary to be the main model.

4.4. Rollout Strategies 87

Seldon Deploy

1. GitOps integration for the whole process, so that all changes can be audited (see GitOps under Architecture)

2. Request logs include any requests that go to the canary, with the responses.

4.4.2 Shadow

With a shadow traffic is duplicated so that it goes to both a main model and also a shadow model. The shadow is
typically a newer version being tried out. The responses to requests that reach the end user are only from the main
model, not the shadow. But the shadow requests can be logged and the shadow can be monitored. Within Seldon
Deploy there are features to:

1. A wizard to add a shadow:

88 Chapter 4. Product Tour

Seldon Deploy

2. Visualizing metrics for both default and shadow models:

3. Promotion of the Shadow to be the main model.

4. GitOps integration for the whole process, so that all changes can be audited (see GitOps under Architecture)

5. Request logs include any request to the shadow, with the responses.

4.5 REST API

Seldon Deploy API

Warning: Seldon Deploy’s REST API is considered experimental. The following endpoints could change at any
time and breaking changes are expected.

The REST API of Seldon Deploy lets you to interact with your machine learning deployments programmatically. This
allows you to build complex deployment pipelines to integrate Seldon Deploy with any upstream services.

4.5. REST API 89

Seldon Deploy

If you already have access to a Seldon Deploy installation, you can visit the interactive API reference to learn
more about the Seldon Deploy API and the endpoints that it exposes. The interactive API documentation can be
accessed by clicking on your profile icon, and then clicking on API Docs. Alternatively, you can go directly to
$ML_PLATFORM_HOST/seldon-deploy/swagger/, where $ML_PLATFORM_HOST needs to be replaced by
the domain where your Seldon Deploy installation can be accessed.

4.5.1 Usage

The recommended way of interacting with the Seldon Deploy REST API is through its Python SDK. However, you
can also use plain cURL to send requests.

You can find some example usages below.

Note: These usage examples assume that you have already obtained an access token following the instructions of the
Authentication section.

cURL

Python

We can use cURL (available on most distributions) or similar HTTP clients to interact directly with the Seldon Deploy
API.

For example, if we assume that there is an authentication token present in the $TOKEN variable, we could list our
machine learning deployments as:

ML_PLATFORM_HOST="https://ml.example.com"
curl -k -X GET \
"$ML_PLATFORM_HOST/seldon-deploy/api/v1alpha1/namespaces/staging/seldondeployments"

→˓\
-H "Authorization: Bearer $TOKEN"

90 Chapter 4. Product Tour

https://github.com/SeldonIO/seldon-deploy-sdk

Seldon Deploy

To use the Python SDK, the first step will be to install the seldon-deploy-sdk package. You can do so using
pip as:

pip install seldon-deploy-sdk

Once we have obtained an authentication token, we will need to set it as the access_token of our
Configuration object. Afterwards, we could list all our machine learning deployments under the staging
namespace as:

from seldon_deploy_sdk import Configuration, ApiClient, SeldonDeploymentsApi

config = Configuration()
config.host = "http://ml.example.com/seldon-deploy/api/v1alpha1"
config.access_token = "<AUTH_TOKEN>"

api_client = ApiClient(config)

List current machine learning deployments
sdep_api = SeldonDeploymentsApi(api_client)
sdeps = sdep_api.list_seldon_deployments("staging")

print(sdeps)

You can find more details on the Python SDK reference documentation.

4.5.2 Authentication

All requests to the Seldon Deploy API must be authenticated. Therefore, before using the API you must obtain
an authentication token. Note that the process to issue a new authentication token may change depending on your
architecture and your OIDC provider.

You can see some authentication examples below.

OIDC Client

In general, to authenticate against an OIDC provider, we will assume that the password flow is supported and that
the OIDC client is public.

In Keycloak, this can be set by enabling Direct Access Grants and setting the client as open through the
client dashboard in the admin UI.

cURL

Python

We can use plain cURL to obtain a token, by emulating OpenID’s password flow.

If we assume a set up where Keycloak is configured as an OIDC provider and that there is an OpenID client named
sd-api, we could obtain an authorization token to access the API using plain cURL as:

SD_USER="data-scientist-1@example.com"
SD_PASSWORD="12341234"
CLIENT_ID="sd-api"

KEYCLOAK_HOST="https://auth.example.com"
KEYCLOAK_REALM="deploy-realm"

(continues on next page)

4.5. REST API 91

https://github.com/SeldonIO/seldon-deploy-sdk/tree/master/python
https://www.keycloak.org/docs/latest/server_admin/#oidc-clients

Seldon Deploy

(continued from previous page)

_payload="username=$SD_USER&password=$SD_PASSWORD&grant_type=password&client_id=
→˓$CLIENT_ID&scope=openid"
_authEndpoint="$KEYCLOAK_HOST/auth/realms/$KEYCLOAK_REALM/protocol/openid-connect/
→˓token"
RESULT=$(curl -k -s --data $_payload $_authEndpoint)
TOKEN=$(echo $RESULT | sed 's/.*id_token":"//g' | sed 's/".*//g')

echo "TOKEN=$TOKEN"

Note that this example also assumes that the sd-api OpenID client is public and that it supports the password
flow.

Out of the box, the Python SDK supports a set of common authentication workflows. Each of these, can be found
under the seldon_deploy_sdk.auth package.

• SessionAuthenticator: Allows you to authenticate against Dex, configured as an ingress-level authenti-
cation provider. This is equivalent to Seldon Deploy’s default Kubeflow setup.

• OIDCAuthenticator: Allows you to authenticate against an OIDC-compatible provider, using the
password flow. This is equivalent to Seldon Deploy’s default trial setup.

As an example, let’s assume a set up where Keycloak is configured as an OIDC provider and there is an OpenID
client named sd-api, under a realm named deploy-realm. Note that this architecture is equivalent to Sel-
don Deploy’s default trial installation. Under these conditions, we could obtain an access token, using the
seldon_deploy_sdk.auth.OIDCAuthenticator helper, as:

from seldon_deploy_sdk import Configuration
from seldon_deploy_sdk.auth import OIDCAuthenticator

sd_user = "data-scientist-1@example.com"
sd_password = "12341234"

config = Configuration()
config.host = "http://ml.example.com/seldon-deploy/api/v1alpha1"
config.oidc_client_id = "sd-api"
config.oidc_server = "http://ml.example.com/auth/realms/deploy-realm"
For private OpenID clients:
config.oidc_client_secret = "my-secret"

Authenticate against an OIDC provider
auth = OIDCAuthenticator(config)
access_token = auth.authenticate(sd_user, sd_password)

Configure the obtained access token as the one to use downstream
config.access_token = access_token
print(config.access_token)

You can find more details on the Python SDK reference documentation.

92 Chapter 4. Product Tour

https://github.com/SeldonIO/seldon-deploy-sdk/tree/master/python

Seldon Deploy

4.5.3 Versioning

The API endpoints are versioned to avoid clashes between different versions of the API. The current version of the
API is v1alpha1, which means that breaking changes are still highly likely to happen. Once the current version
graduates to stable, it will be renamed to v1.

Note that this versioning schema is similar to the one followed in Kubernetes.

4.5.4 Reference

4.5.4.1 API Reference (v1alpha1)

Reference for version v1alpha1 of the API

4.5. REST API 93

Seldon Deploy

94 Chapter 4. Product Tour

CHAPTER

FIVE

DEMOS

Important: These demos assume you have a running Seldon Deploy installed with relevant permissions to cre-
ate/update deployments.

5.1 Seldon Core Demos

These demos assume you have a running Seldon Deploy installed with relevant permissions to create/update deploy-
ments.

They mostly use pre-built models, except the kubeflow demo which has steps to build a model and push it to minio.

Models can be pushed to minio or other objects stores for pre-packaged model servers or packaged as docker containers
using language wrappers. See the Seldon Core docs for the building and hosting stages.

However you install your SeldonDeployments, Seldon Deploy should see them in visible namespaces. These demos
use the Deploy UI for ease.

5.1.1 Canary Promotion

5.1.1.1 Iris Model

We will:

95

https://github.com/SeldonIO/seldon-deploy-resources/blob/main/examples/seldon-core/kubeflow/seldon_e2e_adult.ipynb
https://docs.seldon.io/projects/seldon-core/en/latest/

Seldon Deploy

• Deploy a pretrained sklearn iris model

• Load test the model

• View request payloads

• Canary a new XGBoost model

• Load test canary model

• Promote the canary model

5.1.1.2 Deploy Model

Create the model using the wizard with a name of your choice and the model uri:

gs://seldon-models/sklearn/iris

All other defaults can be left as provided.

5.1.1.3 Start Load Test

One the model is running start a load test with the following request payload:

Use the request.json file in this folder:

{
"data": {

"names": ["Sepal length","Sepal width","Petal length", "Petal Width"],
"ndarray": [

[6.8, 2.8, 4.8, 1.4],
[6.1, 3.4, 4.5, 1.6]

]
}

}

96 Chapter 5. Demos

Seldon Deploy

When running you should see metrics on dashboard. Enter the request logs screen to view requests. If this doesn’t
work, consult the metrics or request logging docs section for debugging.

You can also see core metrics from the dashboard.

5.1. Seldon Core Demos 97

Seldon Deploy

5.1.1.4 Create Canary

Create an XGBoost canary model using the saved model at:

gs://seldon-models/xgboost/iris

Rerun the load test and you should see metrics for both default and canary models.

98 Chapter 5. Demos

Seldon Deploy

Promote the XGBoost Canary to be the main model.

5.1.2 Model Explanations with Anchor Images

In this demo we will:

• Launch an income classification model which has image training features

• Send a request to get a prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

This model provides a model trained to classify images based on CIFAR10 dataset.

5.1. Seldon Core Demos 99

https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

The explainer uses the anchors technique to provide insight into why a particular classification was made by the model.
We’ll see patterns in an input image that are most relevant to the prediction outcome.

5.1.2.1 Create Model

Use the following model uri with tensorflow runtime.

gs://seldon-models/tfserving/cifar10/resnet32

5.1.2.2 Get Predictions

Run a single prediction using the tensorflow payload format of an image truck

5.1.2.3 Add an Anchor Images Explainer

Create a model explainer using the URI below for the saved explainer.

gs://seldon-models/tfserving/cifar10/explainer-py36-0.5.2

5.1.2.4 Get Explanation for one Request

View all requests and then explain it using the JSON below:

5.1.3 Model Explanations with Anchor Tabular

In this demo we will:

• Launch an income classification model which has tabular training features

• Send a request to get a prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

This demo uses a model trained to predict high or low income based on demographic features from a 1996 US census.

The explanation will offer insight into why an input was classified as high or low. It uses the anchors technique to
track features from training data that correlate to category outcomes.

100 Chapter 5. Demos

https://archive.ics.uci.edu/ml/datasets/census+income

Seldon Deploy

5.1.3.1 Create Model

Use the model uri:

gs://seldon-models/sklearn/income/model-0.23.2

5.1.3.2 Get Predictions

Run a single prediction using the JSON below.

{
"data": {
"names": [
"Age",
"Workclass",
"Education",
"Marital Status",
"Occupation",
"Relationship",
"Race",
"Sex",
"Capital Gain",
"Capital Loss",
"Hours per week",
"Country"

],
"ndarray": [

[
53,
4,
0,
2,
8,
4,
2,
0,
0,
0,
60,
9

]
]

}
}

5.1. Seldon Core Demos 101

Seldon Deploy

5.1.3.3 Add an Anchor Tabular Explainer

Create a model explainer using the URI below for the saved explainer.

gs://seldon-models/sklearn/income/explainer-py36-0.5.2

5.1.3.4 Get Explanation for one Request

Resend a single request and then explain it using the JSON below:

{
"data": {
"names": [
"Age",
"Workclass",
"Education",
"Marital Status",
"Occupation",
"Relationship",
"Race",
"Sex",
"Capital Gain",
"Capital Loss",
"Hours per week",
"Country"

],
"ndarray": [

[
53,
4,
0,
2,
8,
4,
2,
0,
0,
0,
60,
9

]
]

}
}

Make the prediction again and go to the ‘Request Logs’ screen. From there you can click through to the explanation
with full feature names.

102 Chapter 5. Demos

Seldon Deploy

The anchors reveal which features most contributed to the classification of ‘Low Income’. Here, for nearly 98% of the
training data a Marital Status of ‘Separated’ correlates to Low Income. Having no Capital Gain also correlates but is
a less strong indicator.

At the bottom we are shown other examples of Low Income data points. This helps to reveal the patterns that the
model is relying on to make predictions.

5.1.4 Model Explanations with Anchor Text

In this demo we will:

• Launch a movie sentiment model which takes text input

• Send a request to get a sentiment prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

The explainer uses the anchors technique to provide insight into why a particular classification was made by the model.
We’ll see patterns in input text that are most relevant to the prediction outcome.

5.1.4.1 Create Model

Use the model uri:

gs://seldon-models/sklearn/moviesentiment

5.1. Seldon Core Demos 103

Seldon Deploy

5.1.4.2 Get Predictions

Run a single prediction using the JSON below.

{
"data": {
"names": [
"Text review"

],
"ndarray": [

"this film has bad actors"
]

}
}

5.1.4.3 Add an Anchor Text Explainer

Create an Anchor Text explainer using the default settings.

5.1.4.4 Get Explanation for one Request

Resend a single request using the JSON below and then explain it:

{
"data": {
"names": [
"Text review"

],
"ndarray": [

"this film has bad actors"
]

}
}

5.1.5 Model Catalogue

5.1.5.1 Registering Models and Editing Metadata

Notes:

1. Model Catalog is currently experimental.

2. This feature requires PostgreSQL to be installed.

3. This demo expects that there is no existing model with the same URI or the same combination of
Model Name and Version. The model catalog enforces uniqueness on these fields. Requests
that result in a conflict will be rejected.

104 Chapter 5. Demos

Seldon Deploy

5.1.5.2 Register New Model

1. From the Deployments Overview page, select Model Catalog at the top of the page.

2. Click Register A New Model to open the registration modal.

3. Enter the following parameters:

• Model Name: cifar10

• URI: gs://seldon-models/tfserving/cifar10/resnet32

• Artifact Type: Tensorflow

• Version: v1.0

• Task Type: classification

1. Append tags and metric parameters with the following values. To add more parameters, use the + button. To
delete a parameter, use the x button:

• Tags:

– key: author, value: Seldon,

– key: training_set, value: Resnet32,

• Metrics:

– key: p1, value: 0.8,

– key: p2: value: 0.6

1. Click Register Model

5.1.5.3 Edit Model Metadata

From The Model Catalog

1. From the Deployments Overview page, select Model Catalog at the top of the page.

2. Select a model. For the purposes of this demonstration, the model registered in the Register New Model step
will be used.

3. On the side drawer that opens, click EDIT METADATA.

4. Add a new tag with the following values:

• key: stage, value: production

1. Click SAVE METADATA at the top right hand side of the side drawer to save your edit.

5.1. Seldon Core Demos 105

Seldon Deploy

From A Deployment’s Dashboard

Note: Please follow the instructions on creating an Outlier Detector.

1. From the Deployments Overview page, select the deploment to append metadata on the running model. For the
purposes of this demonstration, the deployment created from the Outlier Detector example will be used.

2. From your selected deployment’s dashboard, click the model being used to open a drawer on the right.

3. Click EDIT METADATA.

4. Under the Tags section, press the + button to add a new tag.

5. For the new tag, enter the following parameters:

• key: stage, value: production

1. Click SAVE METADATA on the top right of the side drawer.

Deploying Models From The Model Catalog

Note: This demonstration requires the cifar10 model to have been registered already.

1. From the overview page, navigate to the model catalog using the header tabs.

2. Select the more icon for the model named cifar10.

3. In the dropdown menu that appears, select Deploy.

4. In the wizard which appears, name the deployment cifar10, and set the protocol to Tensorflow. Click
next when done.

5. On the Default Predictor Parameters screen, the model URI should automatically be appended. For Triton
models, the model name will also be appended automatically. Click next to continue.

6. Skip the remaining steps and click Launch.

Select Deployments header tab to verify that your model has been deployed.

5.1.6 Outlier Detection with CIFAR10 Image Classifier

This demo is based on VAE outlier detection in the alibi detect project. Here we will :

• Launch an image classifier model trianed on the CIFAR10 dataset

• Setup an outlier detector for this particular model

• Send a request to get a image classification

• Send a perturbed request to get a outlier detection

Important: This demo requires Knative installation on the cluster as the outlier detector will be installed as a kservice.

106 Chapter 5. Demos

https://docs.seldon.io/projects/alibi-detect/en/stable/examples/od_vae_cifar10.html
https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

5.1.6.1 Create Model

Use the following model uri with tensorflow runtime. Set the protocol to ‘tensorflow’:

gs://seldon-models/tfserving/cifar10/resnet32

5.1.6.2 Setup Outlier detector

Setup an outlier detector with model name cifar10 using the default settings (which sets Reply URL as seldon-
request-logger in the logger’s default namespace - change if you modified this at install time) and storage URI as
follows:

gs://seldon-models/alibi-detect/od/OutlierVAE/cifar10

5.1.6.3 Make Predictions

Run a single prediction using the tensorflow payload format of an image truck. Also a perturbed image of the truck
in the same format at outlier truck image. Make a couple of these requests at random using the predict tool
in the UI.

5.1.6.4 View outliers on the Requests Screen

Go to the requests screen to view all the historical requests. You can see the outlier value on each instance. Also you
can highlight outliers based on this score and also use the filter to see only the outliers as needed.

5.1.6.5 Monitor outliers on the Monitor Screen

Under the ‘Monitor’ section you can see a timeline of outlier requests.

5.1.6.6 Troubleshooting

If you experience issues with this demo, see the troubleshooting docs and also the knative or elasticsearch sections.

5.1. Seldon Core Demos 107

Seldon Deploy

5.1.7 Drift Detection with CIFAR10 Image Classifier

This demo is based on model distiliation drift detector in the alibi detect project.

The idea is that input data can change over time and become significantly different from the model training data. When
the input data distribution shifts then prediction quality can drop. We want to know when that happens.

Here we will :

• Launch an image classifier model trianed on the CIFAR10 dataset.

• Setup a drift detector for this particular model.

• Send a request to get a image classification.

• Send a request to trigger a drift detection.

• View the drift in the dashboard.

Important: This demo requires Knative installation on the cluster as the outlier detector will be installed as a kservice.

5.1.7.1 Create A Model

Note

1. Verify the namespace you will be deploying to.

2. Deployment names must be unique and only contain alphanumeric characters.

From the deployment overview screen, click on the Create button to create a new deployment.

1. In the deployment creation wizard, enter a name for your new deployment.

2. Select the namespace you would like the deployment to reside in (e.g. seldon).

3. From the protocol dropdown menu, select Tensorflow and click next.

4. For the deployment details, enter the following values, then click next:

• Runtime: Tensorflow

• Model URI:

gs://seldon-models/tfserving/cifar10/resnet32

5. Skip the remaining steps, then click Launch.

5.1.7.2 Add A Drift Detector

Note

1. Make sure you are in the correct namespace.

2. By default, the Reply URL is set as seldon-request-logger in the logger’s default names-
pace. If you are using a custom installation, please change this parameter according to your
installation.

3. Increase this value to make the drift detector less sensitive.

108 Chapter 5. Demos

https://docs.seldon.io/projects/alibi-detect/en/stable/examples/cd_distillation_cifar10.html
https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

From the deployment overview page, select your cifar10 deployment to enter the deployment dashboard.

Inside the deployment dashboard, add a drift detector with by clicking the Create button within the Drift
Detection widget.

Enter the following parameters in the modal popup which appears, using the default settings:

• Model Name: cifar10.

• Model URI:

gs://seldon-models/alibi-detect/cd/ks/cifar10-0_4_4

• Reply URL:

http://seldon-request-logger.seldon-logs

• Batch Size: 2.

• Protocol: Tensorflow.

• HTTP Port: 8080.

Then, click Create Drift-Detector to complete the setup.

5.1.7.3 Make Predictions

1. From the deployment dashboard, click on make new prediction.

2. Run a single prediction using the tensorflow payload format of an image truck

Next, run a single prediction using the tensorflow payload format of an image of an outlier truck image.

5.1.7.4 Monitor Drift On The Monitor Screen

Under the ‘Monitor’ section of your deployment, you can see a timeline of drift requests.

This becomes clearer if you make many requests over a period of time.

5.1.7.5 Troubleshooting

If you experience issues with this demo, see the troubleshooting docs and also the knative or elasticsearch sections.

5.1. Seldon Core Demos 109

Seldon Deploy

5.1.8 Model Accuracy Metrics with Iris Classifier

Iris is the family in the flower which contains the several species such as the setosa, versicolor, virginica,etc. This
demo is based on Iris classification model based on flower properties like Sepal length, Sepal width, Petal length, Petal
width. Here we will :

• Launch an iris classifier model

• Setup an metrics server for this particular model

• Send a request to get a iris classification

• Send feedback requests to get a gather accuracy metrics

Important: This demo requires Knative installation on the cluster as the metrics server will be installed as a kservice.
Also the metrics server only works with classification models in this version.

5.1.8.1 Create Model

Use the following model uri with seldon runtime. Set the protocol to ‘seldon’:

gs://seldon-models/sklearn/iris

5.1.8.2 Setup Metrics Server

Setup an metrics server with model name multiclassserver using the default settings (which sets Reply URL as
seldon-request-logger in the logger’s default namespace - change if you modified this at install time) and storage URI
as follows:

adserver.cm_models.multiclass_numeric.MultiClassNumeric

And set the protocol as Seldon Feedback for port 8080.

5.1.8.3 Make Predictions

Run a single prediction using the ndarray payload format. Make a couple of these requests at random using the predict
tool in the UI.

{
"data": {

"names": ["Sepal length", "Sepal width", "Petal length", "Petal Width
→˓"],

"ndarray": [
[6.8, 2.8, 4.8, 1.4]

]
}

}

The prediction response is versicolor.

110 Chapter 5. Demos

Seldon Deploy

{
"data": {

"names": [
"t:0",
"t:1",
"t:2"

],
"ndarray": [

[
0.008074020139120223,
0.7781601484223125,
0.21376583143856714

]
]

},
"meta": {}

}

5.1.8.4 Send Feedback

As we saw the prediction response was versicolor. In numeric form the response is,

{
"data": {
"ndarray": [
1

]
}

}

Now prepare a feedback with the prediction response and the truth for the numeric metrics server as follows:

{
"response": {

"data": {
"ndarray": [

1
]

}
},
"truth": {

"data": {
"ndarray": [

1
]

}
}

}

Now send a feedback request as following with the auth token from the curl form in the predict tool. This feedback
represents a case of true positive.

5.1. Seldon Core Demos 111

Seldon Deploy

CLUSTER_IP=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
curl -k -H "X-Auth-Token: $AUTH_TOKEN" -H "Content-Type: application/json" https://
→˓$CLUSTER_IP/seldon/seldon/iris-classifier/api/v0.1/feedback -d '{"response":{"data":
→˓{"ndarray":[1]}},"truth":{"data":{"ndarray":[1]}}}'

Also prepare a feedback with the prediction response and the truth for the numeric metrics server such that the truth is
different from the prediction.

{
"response": {

"data": {
"ndarray": [

1
]

}
},
"truth": {

"data": {
"ndarray": [

0
]

}
}

}

Now send a feedback request as following with the auth token from the curl form in the predict tool. This feedback
represents a case of false positives and negetives.

CLUSTER_IP=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
curl -k -H "X-Auth-Token: $AUTH_TOKEN" -H "Content-Type: application/json" https://
→˓$CLUSTER_IP/seldon/seldon/iris-classifier/api/v0.1/feedback -d '{"response":{"data":
→˓{"ndarray":[1]}},"truth":{"data":{"ndarray":[0]}}}'

5.1.8.5 Monitor accuracy metrics on the Monitor Screen

Go to the monitor screen’s the accuracy metrics tab to view all the metrics. Set the time range to view the metrics. You
can see metrics like accuracy, precision, recall and sepcificity here. Notice the drop in accuracy metrics after the false
feedback was received.

5.1.8.6 Submit batch feedback using Batch Processor component

Now we will submit a feedback as a batch using the Batch Processor component.

We will use two files, each containing 10k feedback instances:

• 90% success rate feedback file

• 40% success rate feedback file

Ww need to upload the files to MinIO’s data bucket. For details on interacting with MinIO UI please see Batch
Demo.

112 Chapter 5. Demos

Seldon Deploy

Once files are in S3 bucket, we go to Batch Requests screen using following button available at the main model
screen

and submit batch request using following form values for both feedback-input-90.txt and
feedback-input-40.txt files

Input Data Location: s3://data/feedback-input-40.txt
Output Data Location: s3://data/output-data-{{workflow.name}}.txt
Number of Workers: 15
Number of Retries: 3
Method: Feedback
Transport Protocol: REST
Input Data Type: Raw Data
Object Store Secret Name: seldon-job-secret

Now go to the monitor view and observe how metrics value evolve over time.

5.1. Seldon Core Demos 113

Seldon Deploy

5.1.8.7 Troubleshooting

If you experience issues with this demo, see the troubleshooting docs and also the knative or elasticsearch sections.

5.1.9 Batch Requests

5.1.9.1 Pre-requisites

Minio should already be installed with Seldon Deploy. The minio browser should be exposed on /minio/. For a
managed trial cluster by default the credentials will be as per the deploy login.

On a production cluster the namespace needs to have been setup with a service account. This can be found under the
argo install documentation.

We will:

• Deploy a pretrained sklearn iris model

• Run a batch job to get predictions

• Check the output

114 Chapter 5. Demos

Seldon Deploy

5.1.9.2 Deploy Model

Use the model uri:

gs://seldon-models/sklearn/iris

5.1.9.3 Setup Input Data

Download the input data file.

Go to the minio browser and use the button in the bottom-right to create a bucket. Call it data.

Again from the bottom-right choose to upload the input-data.txt file to the data bucket.

5.1. Seldon Core Demos 115

Seldon Deploy

5.1.9.4 Run a Batch Job

Go to ‘Batch Jobs’ in the middle-right under the text ‘Initiate or get the status of batch requests’. Create a batch job
with parameters:

Input Data Location: s3://data/input-data.txt
Output Data Location: s3://data/output-data-{{workflow.name}}.txt
Number of Workers: 15
Number of Retries: 3
Method: Predict
Transport Protocol: REST
Input Data Type: ndarray
Object Store Secret Name: seldon-job-secret

116 Chapter 5. Demos

Seldon Deploy

Here seldon-job-secret is a pre-created secret in the namespace containing env vars.

Give the job 1-2 minutes to complete. Then refresh the page to see the status.

In minio you should now see an output file:

5.1. Seldon Core Demos 117

Seldon Deploy

If you open that file you should see contents such as:

{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.
→˓003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container
→˓": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-
→˓2b44-11eb-8723-ae3ff26c8be6", "batch_index": 3.0, "batch_instance_id": "8a8ff94e-
→˓2b44-11eb-b8d0-ae3ff26c8be6"}}}}
{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.
→˓003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container
→˓": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-
→˓2b44-11eb-8723-ae3ff26c8be6", "batch_index": 6.0, "batch_instance_id": "8a903666-
→˓2b44-11eb-b8d0-ae3ff26c8be6"}}}}
{"data": {"names": ["t:0", "t:1", "t:2"], "ndarray": [[0.0006985194531162841, 0.
→˓003668039039435755, 0.9956334415074478]]}, "meta": {"requestPath": {"iris-container
→˓": "seldonio/sklearnserver:1.5.0-dev"}, "tags": {"tags": {"batch_id": "8a8f5e26-
→˓2b44-11eb-8723-ae3ff26c8be6", "batch_index": 1.0, "batch_instance_id": "8a8fbe98-
→˓2b44-11eb-b8d0-ae3ff26c8be6"}}}}

If not, see the argo section for troubleshooting.

5.1.10 NVIDIA Triton Server and Alibi Explanations

In this demo we will deploy an image classification model on NVIDIA Triton with GPUs and run explanations using
Seldon Alibi. This demo also uses the KFserving V2 protocol for model prediction and explanation payload. Learn
more about V2 protocol at Predict Protocol - Version 2 git repository.

118 Chapter 5. Demos

https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2

Seldon Deploy

5.1.10.1 Deploy an image classifier model

For this example choose tfcifar10 as the name and use the KFServing protocol option.

For the model to run we have created several image classification models from the CIFAR10 dataset.

• Tensorflow Resnet32 model: gs://seldon-models/triton/tf_cifar10

• ONNX model: gs://seldon-models/triton/onnx_cifar10

• PyTorch Torchscript model: gs://seldon-models/triton/pytorch_cifar10

Choose one of these and select Triton as the server. Customize the model name to that of the name of the model saved
in the bucket for Triton to load.

5.1. Seldon Core Demos 119

https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

Configure NVIDIA GPU resources

Next, on the resources screen add 1 GPU request/limit assuming you have these available on your cluster and ensure
your have provided enough memory for the model. To determine these settings we recommend you use the NVIDIA
model analyzer.

5.1.10.2 Make model predictions

When ready you can test with images. The payload will depend on the model from above you launched.

• Resnet32

• ONNX

• PyTorch

5.1.10.3 Configure an Alibi Anchor Images Explainer

The explanation will offer insight into why an input was classified as high or low. It uses the anchors technique to
track features from training data that correlate to category outcomes. Create a model explainer using the URI below
for the saved explainer.

gs://seldon-models/tfserving/cifar10/explainer-py36-0.5.2

120 Chapter 5. Demos

https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer/
https://developer.nvidia.com/blog/maximizing-deep-learning-inference-performance-with-nvidia-model-analyzer/

Seldon Deploy

5.1.10.4 Get Explanation for a single prediction

View all requests and then click the alibi icon to run an explanation request. Note that the explanation request is also
made as the same KFserving V2 protocol payload.

5.1.11 Kubeflow Example

5.1.11.1 Kubeflow Pipeline with Kale example using the Seldon Deploy Enterprise API

We use demographic features from the 1996 US census to build an end to end machine learning pipeline. The pipeline
is also annotated so it can be run as a Kubeflow Pipeline using the Kale pipeline generator.

The notebook/pipeline stages are:

1. Setup

• Imports

• pipeline-parameters

• minio client test

2. Train a simple sklearn model and push to minio

3. Prepare an Anchors explainer for model and push to minio

4. Test Explainer

5. Train an isolation forest outlier detector for model and push to minio

6. Deploy a Seldon model and test using the Seldon Deploy Enterprise API

7. Deploy an outlier detector with the Seldon Deploy Enterprise API

8. Test the outlier detector

5.1. Seldon Core Demos 121

https://archive.ics.uci.edu/ml/datasets/census+income
https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/
https://github.com/kubeflow-kale/kale

Seldon Deploy

5.1.11.2 Prerequisites

• A Seldon Deploy install, version >=1.0.0, installed with Kubeflow.

• Obtain the code for this demo by running from the seldon-deploy-resources Github repository.

git clone https://github.com/SeldonIO/seldon-deploy-resources.git
cd examples/seldon-core/kubeflow

5.1.11.3 GCP Setup

For a GCP cluster we need a RWX Persistent Volume for the shared data Kale needs. To set this up on GCP update
and run the script create-pv.sh after setting the values for your project, Filestore name and Zone:

PROJECT=seldon-demos
FS=pipeline-data
ZONE=europe-west1-b

gcloud beta filestore instances create ${FS} --project=${PROJECT} --zone=$
→˓{ZONE} --tier=STANDARD --file-share=name="volumes",capacity=1TB --
→˓network=name="default",reserved-ip-range="10.0.0.0/29"

FSADDR=$(gcloud beta filestore instances describe ${FS} --project=${PROJECT} --zone=$
→˓{ZONE} --format="value(networks.ipAddresses[0])")

helm install nfs-cp stable/nfs-client-provisioner --set nfs.server=${FSADDR} --set
→˓nfs.path=/volumes --namespace=kubeflow

kubectl rollout status deploy/nfs-cp-nfs-client-provisioner -n kubeflow

The project and zone should match your GCP kubernetes cluster. FS name can be pipeline-data.

If you build the pipeline Python DSL using Kale from the notebook you will at present need to modify the created
pyhton and change the Kale VolumeOp by adding a storage_class for the NFS PV, for example:

marshal_vop = dsl.VolumeOp(
name="kale-marshal-volume",
resource_name="kale-marshal-pvc",
storage_class="nfs-client",
modes=dsl.VOLUME_MODE_RWM,
size="1Gi")

5.1.11.4 RBAC Setup

The default pipeline-runner service account needs to be modified to allow creation of secrets and knative triggers.

As an admin user run:

kubectl create -f pipeline-runner-additions.yaml

122 Chapter 5. Demos

https://github.com/SeldonIO/seldon-deploy-resources.git

Seldon Deploy

5.1.11.5 Pipeline/Notebook Parameters

The pipeline/notebook has several core parameters that will need to be set correctly.

Name Default Value
DEPLOY_NAMESPACE admin
DEPLOY_PASSWORD 12341234
DEPLOY_SERVER https://x.x.x.x.x/seldon-deploy/
DEPLOY_USER admin@kubeflow.org
EXPLAINER_MODEL_PATH sklearn/income/explainer
INCOME_MODEL_PATH sklearn/income/model
MINIO_ACCESS_KEY admin@seldon.io
MINIO_HOST minio-service.kubeflow:9000
MINIO_MODEL_BUCKET seldon
MINIO_SECRET_KEY 12341234
OUTLIER_MODEL_PATH sklearn/income/outlier

If you’re not sure of your minio credentials, run kubectl get secret -n kubeflow
mlpipeline-minio-artifact -o yaml and base64 decode them.

5.1.11.6 Kubeflow Notebook Server

Start a Kubeflow Notebook server with custom image seldonio/jupyter-lab-alibi-kale:0.23 (other
settings default)

5.1.11.7 Test Pipeline

Assuming you have run the GCP and RBAC setup above you can launch the pipeline saved in
seldon_e2e_adult_nfs.kale.py.

5.1. Seldon Core Demos 123

https://x.x.x.x.x/seldon-deploy/
mailto:admin@kubeflow.org
mailto:admin@seldon.io

Seldon Deploy

The yaml file can be uploaded to the pipelines UI and then create an experiment and a run.

5.1.11.8 Tested on

If you have tested the pipeline successfully please add a PR to extend the table below.

K8S Kube-
flow

Knative
Eventing

Sel-
don

KF-
Serving

Kale Notes

GKE
1.16.13

1.2 0.18 1.5.0 0.4.0 0.5.0 GCP Setup above, Kale storage_class fix,
RBAC update above

GKE
1.16.15

1.2 0.18 1.5.0 0.4.1 0.5.0 RBAC update and disable istio sidecars

124 Chapter 5. Demos

Seldon Deploy

5.1.12 Distributions Monitoring

Distributions monitoring provides an ability to view the statistics and distributions of features and predictions made
by your model between any given time. This feature also enables you to draw comparisons between the model
predictions for different feature combinations, cohorts and/or time slices. It is a vital aspect of model monitoring cycle
to understand if the deployed model has the desired prediction characteristics during different times and for different
cohorts.

This demo uses a model trained to predict high or low income based on demographic features from a 1996 US census.
In this demo we will observe the predictions and feature distributions of live predictions made using this model with
the following steps:

• Register an income classifier model with the relevant predictions schema

• Launch a Seldon Core deployment with the income classifier model

• Make predictions using a REST requests to the model deployment

• Observe the feature distributions of the live predictions

• Filter distributions by time or predictions and feature level filters

Note: This demo needs the request logger to connect to Seldon Deploy in order to fetch model level predictions
schema. And this requires specific request logger configuration. Also this feature is supported with many protocols
available with deployments like seldon, tensorflow and the kfserving v2 protocol. But not supported for json data,
string data, bytes payload or multi-node graph use cases yet.

5.1.12.1 Register a income classifer model

Register the income classifier SKLearn model with the below URI.

gs://seldon-models/sklearn/income/model-0.23.2

5.1.12.2 Configure predictions schema

Edit the model metadata to update the predictions schema for the model. The predictions schema is a generic schema
structure for machine learning model predictions. It is a definition of feature inputs and output targets from the model
prediction. Use the income classifier model predictions schema to edit and save the model level
metadata. Learn more about the predictions schema at the ML Predictions Schema open source repository.

5.1.12.3 Launch a Seldon Core deployment

Deploy the income classifier model from the catalogue into an appropriate namespace.

5.1. Seldon Core Demos 125

https://archive.ics.uci.edu/ml/datasets/census+income
../../../getting-started/production-installation/request-logging.html#using-deploy-metadata-auth-from-request-logger-to-deploy
https://github.com/SeldonIO/ml-prediction-schema

Seldon Deploy

5.1.12.4 Make predictions using the model deployment

Model predictions can be made in the appropriate protocol. In this demo, we use seldon protocol, see a single predic-
tion payload example below,

{
"data": {
"names": [
"Age",
"Workclass",
"Education",
"Marital Status",
"Occupation",
"Relationship",
"Race",
"Sex",
"Capital Gain",
"Capital Loss",
"Hours per week",
"Country"

],
"ndarray": [[53, 4, 0, 2, 8, 4, 2, 0, 0, 0, 60, 9]]

}
}

Distributions monitoring is especially useful to keep track of predictions when a model makes thousands of predictions
in real world scenario. To simulate such a use case, make multiple predictions over time in the Seldon protocol
request format using the predictions data csv file and the following shell script which makes around
32560 predictions with an interval of 5 seconds between each request. Note that you
need sufficient payload logging infra needed for this.

CLUSTER_IP=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
DEPLOYMENT_NAME=income-classifier
DEPLOYMENT_NAMESPACE=seldon
INTERVAL_SECONDS=5

while IFS= read -r line; do
curl -k -H "Content-Type: application/json" \

http://$CLUSTER_IP/seldon/$DEPLOYMENT_NAMESPACE/$DEPLOYMENT_NAME/api/v0.1/
→˓predictions \

-d '{"data":{"names":["Age","Workclass","Education","Marital Status",
→˓"Occupation","Relationship","Race","Sex","Capital Gain","Capital Loss","Hours per
→˓week","Country"],"ndarray":[['${line// /,}']]}}'

sleep "${INTERVAL_SECONDS}s"
done <prediction-data.csv

126 Chapter 5. Demos

Seldon Deploy

5.1.12.5 Observe predictions and feature distributions

Select the income classifier deployment and go to the monitor section to view the predictions and feature distributions.

5.1.12.6 Filter distributions by time or feature level filters

Filter distributions by time or predictions and feature level filters to compare different cohorts and further analysis. For
example let’s look at the predictions for all individuals in the Age group 25-50 and also filter by their Education as
High-School Grads and Dropouts Only and see how the average prediction frequency changes for this cohort.

5.1.12.7 Configuring parameters

Distributions parameters configuration allows you to configure your charts for further analysis. For example let’s
look at at the charts in the Age group and change the Histogram interval to 11 and Number of time
buckets to 30 to see.

5.1.13 Project based authorization

Notes:

1. Project based authorization is currently experimental.

2. This feature requires PostgreSQL to be installed, and OPA authorization to be enabled.

5.1.13.1 Setup

1. Make sure Open Policy Agent authorization is enabled as per the installation guide.

2. Set the policies in the seldon-deploy-policy config map as shown here:

cat <<EOF | kubectl apply -n seldon-system -f -
apiVersion: v1
kind: ConfigMap
metadata:

name: seldon-deploy-policies
data:

data: '{
"role_grants": {
"data-scientist": [

{
"resource": "project/iris",
"action": "read"

}
]

},
"user_grants": {
"*": [
{

"resource": "namespace/seldon",

(continues on next page)

5.1. Seldon Core Demos 127

Seldon Deploy

(continued from previous page)

"action": "read"
},
{

"resource": "namespace/seldon",
"action": "write"

},
{

"resource": "project/default",
"action": "read"

},
{

"resource": "project/default",
"action": "write"

}
],
"alice": [

{
"resource": "project/income",
"action": "write"

},
{

"resource": "project/income",
"action": "read"

},
{

"resource": "project/iris",
"action": "read"

},
{

"resource": "project/iris",
"action": "write"

}
]

}
}'
EOF

Note how all users (*) will have access to the seldon namespace and default project. Seldon Deploy should
automatically pick up the changes in the config map after a few seconds, but if you want to reload it immediately you
can restart the Seldon Deploy pod.

1. Create two users. If using the default installation with Keycloak you can create a user as described in the official
documentation and you can assign them to a group as described there as well. Note you might have to create the
data-scientist group first. The two users must be:

1. alice with no groups associated with her. According to the policies above, she will have read/write
access to 3 projects - default, iris, and income.

2. bob in the data-scientist group. According to the policies above, he will have read/write access
only to the default project, and read only access to the iris project.

128 Chapter 5. Demos

https://www.keycloak.org/docs/latest/server_admin/index.html#_create-new-user
https://www.keycloak.org/docs/latest/server_admin/index.html#_create-new-user
https://www.keycloak.org/docs/latest/server_admin/index.html#groups

Seldon Deploy

5.1.13.2 Confirm policies are working

1. Login as alice.

2. Go to the Model Catalog page and create the following models:

1. URI: gs://seldon-models/sklearn/iris, Project: default, Artifact Type: SciKit
Learn

2. URI: gs://seldon-models/sklearn/iris, Project: iris, Artifact Type: SciKit Learn

3. URI: gs://seldon-models/sklearn/income/model-0.23.2, Project: income, Artifact
Type: SciKit Learn

3. Create a deployment from each of these models using the Deploy functionality from the Model Catalog.
Confirm all three deployments are shown in the Deployments tab.

4. Logout from the alice profile and login as bob.

5. Confirm you only see the default and iris deployments, but not the income deployment.

6. Confirm you only see the default and iris models, but not the income one.

5.1. Seldon Core Demos 129

Seldon Deploy

7. Confirm that you cannot delete or modify the iris model since bob has only read permissions on the iris
project.

5.2 KFServing Demos

These demos assume you have a running Seldon Deploy installed with relevant permissions to create/update deploy-
ments.

They mostly use pre-built models, except the kubeflow demo which has steps to build a model and push it to minio.

Models can be pushed to minio or other objects stores for pre-packaged model servers or a custom docker image. See
the KFServing docs for the building and hosting stages.

However you install your InferenceServices, Seldon Deploy should see them in visible namespaces. These demos use
the Deploy UI for ease.

5.2.1 Canary Promotion

In this demo you will:

• Deploy a SKLearn KFServing Iris Classifer

• Run a load test to show Knative autoscaling

• Create a canary XGBoost model

• Promote the canary

• Delete the model

From the Deploy UI create a server:

130 Chapter 5. Demos

https://github.com/SeldonIO/seldon-deploy-resources/blob/main/examples/seldon-core/kubeflow/seldon_e2e_adult.ipynb
https://github.com/kubeflow/kfserving/tree/master/docs/samples/v1alpha2/custom/prebuilt-image
https://github.com/kubeflow/kfserving/blob/42007c532286a1e43893ef2be03b15e104bfd7a4/docs/samples/v1alpha2/sklearn/README.md

Seldon Deploy

Use the model uri:

gs://kfserving-samples/models/sklearn/iris

5.2.1.1 Run a Load Test

When the deployment is ready click on it and “Start a Load Test”.

Set the duration to 60 secs and the number of connections to 10.

Use the request.json file in this folder:

{
"instances": [
[6.8, 2.8, 4.8, 1.4],
[6.1, 3.4, 4.5, 1.6]

]
}

You should see pod counts scale up and then down, something like:

5.2. KFServing Demos 131

Seldon Deploy

5.2.1.2 Adding a Canary

Now follow the “Add Canary” wizard and add an XGBoost canary:

Use the XGBoost Iris model whose saved Booster is stored at:

gs://kfserving-samples/models/xgboost/iris

Once the canary is running you can rerun the load test and see traffic split between both.

To promote canary press the “Promote Canary” button

5.2.1.3 Delete the Deployment

Finally, you can delete the model.

5.2.2 Model Explanations with Anchor Images

In this demo we will:

• Launch an income classification model which has image training features

• Send a request to get a prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

This model provides a model trained to classify images based on CIFAR10 dataset.

The explainer uses the anchors technique to provide insight into why a particular classification was made by the model.
We’ll see patterns in an input image that are most relevant to the prediction outcome.

5.2.2.1 Create Model

Use the following model URI with tensorflow runtime.

gs://seldon-models/tfserving/cifar10/resnet32

132 Chapter 5. Demos

https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

5.2.2.2 Get Predictions

Run a single prediction using the tensorflow payload format of an image truck.

5.2.2.3 Add an Anchor Images Explainer

Create a model explainer using the URI below for the saved explainer.

gs://seldon-models/tfserving/cifar10/explainer-py36-0.5.2

5.2.2.4 Get Explanation for one Request

View all requests and then explain it using the JSON below:

5.2.3 Model Explanations with Anchor Tabular

In this demo we will:

• Launch an income classification model which has tabular training features

• Send a request to get a prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

This model provides a model trained to predict high or low income based on demographic features from a 1996 US
census.

The explanation will offer insight into why an input was classified as high or low. It uses the anchors technique to
track features from training data that correlate to category outcomes.

5.2.3.1 Create Model

Use the model uri:

gs://seldon-models/sklearn/income/model

5.2. KFServing Demos 133

https://archive.ics.uci.edu/ml/datasets/census+income
https://archive.ics.uci.edu/ml/datasets/census+income

Seldon Deploy

5.2.3.2 Get Predictions

Run a single prediction using the JSON below.

{"instances":[[39, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]]}

5.2.3.3 Add an Anchor Tabular Explainer

Create a model explainer using the URI below for the saved explainer.

gs://seldon-models/sklearn/income/explainer-py36-0.5.2

5.2.3.4 Get Explanation for one Request

Resend a single request and then explain it using the JSON below:

{"instances":[[39, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]]}

Currently the display does not show feature names as they’ve not been supplied for the KFServing request. That is
a planned future feature for KFServing. See the equivalent Seldon demo for explanations with feature names and for
more detail.

5.2.4 Model Explanations with Anchor Text

In this demo we will:

• Launch a movie sentiment model which takes text input

• Send a request to get a sentiment prediction

• Create an explainer for the model

• Send the same request and then get an explanation for it

The explainer uses the anchors technique to provide insight into why a particular classification was made by the model.
We’ll see patterns in input text that are most relevant to the prediction outcome.

5.2.4.1 Create Model

Use the model uri:

gs://seldon-models/sklearn/moviesentiment

134 Chapter 5. Demos

Seldon Deploy

5.2.4.2 Get Predictions

Run a single prediction using the JSON below.

{
"instances": [
"a visually exquisite but narratively opaque and emotionally vapid experience of

→˓style and mystification"
]

}

5.2.4.3 Add an Anchor Text Explainer

Create an Anchor Text explainer using the default settings.

5.2.4.4 Get Explanation for one Request

Resend a single request using the JSON below and then explain it:

{
"instances": [
"a visually exquisite but narratively opaque and emotionally vapid experience of

→˓style and mystification"
]

}

5.2.5 Model Catalogue

5.2.5.1 Registering Models and Editing Metadata

Notes:

1. Model Catalog is currently experimental.

2. This feature requires PostgreSQL to be installed.

3. This demo expects that there is no existing model with the same URI or the same combination of
Model Name and Version. The model catalog enforces uniqueness on these fields. Requests
that result in a conflict will be rejected.

5.2. KFServing Demos 135

Seldon Deploy

5.2.5.2 Register New Model

1. From the Deployments Overview page, select Model Catalog at the top of the page.

2. Click Register A New Model to open the registration modal.

3. Enter the following parameters:

• Model Name: cifar10

• URI: gs://seldon-models/tfserving/cifar10/resnet32

• Artifact Type: Tensorflow

• Version: v1.0

• Task Type: classification

1. Append tags and metric parameters with the following values. To add more parameters, use the + button. To
delete a parameter, use the x button:

• Tags:

– key: author, value: Seldon,

– key: training_set, value: Resnet32,

• Metrics:

– key: p1, value: 0.8,

– key: p2: value: 0.6

1. Click Register Model

5.2.5.3 Edit Model Metadata

From The Model Catalog

1. From the Deployments Overview page, select Model Catalog at the top of the page.

2. Select a model. For the purposes of this demonstration, the model registered in the Register New Model step
will be used.

3. On the side drawer that opens, click EDIT METADATA.

4. Add a new tag with the following values:

• key: stage, value: production

1. Click SAVE METADATA at the top right hand side of the side drawer to save your edit.

136 Chapter 5. Demos

Seldon Deploy

From A Deployment’s Dashboard

Note: Please follow the instructions on creating an Outlier Detector.

1. From the Deployments Overview page, select the deploment to append metadata on the running model. For the
purposes of this demonstration, the deployment created from the Outlier Detector example will be used.

2. From your selected deployment’s dashboard, click the model being used to open a drawer on the right.

3. Click EDIT METADATA.

4. Under the Tags section, press the + button to add a new tag.

5. For the new tag, enter the following parameters:

• key: stage, value: production

1. Click SAVE METADATA on the top right of the side drawer.

Deploying Models From The Model Catalog

Note: This demonstration requires the cifar10 model to have been registered already.

1. From the overview page, navigate to the model catalog using thr header tabs.

2. Select the more icon for the model named cifar10.

3. In the dropdown menu that appears, select Deploy.

4. In the wizard which appears, name the deployment cifar10, and set the protocol to KFServing. Click
next when done.

5. On the Default Predictor Parameters screen, the model URI should automatically be appended. For Triton
models, the model name will also be appended automatically. Click next to continue.

6. Skip the remaining steps and click Launch.

Select Deployments header tab to verify that your model has been deployed.

5.2.6 Outlier Detection with CIFAR10 Image Classifier

This demo is based on VAE outlier detection in the alibi detect project. Here we will :

• Launch an image classifier model trianed on the CIFAR10 dataset

• Setup an outlier detector for this particular model

• Send a request to get a image classification

• Send a perturbed request to get a outlier detection

Important: This demo requires Knative installation on the cluster as the outlier detector will be installed as a kservice.

5.2. KFServing Demos 137

https://docs.seldon.io/projects/alibi-detect/en/stable/examples/od_vae_cifar10.html
https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

5.2.6.1 Create Model

Use the following model uri

gs://seldon-models/tfserving/cifar10/resnet32

5.2.6.2 Setup Outlier detector

Setup an outlier detector with model name cifar10 using the default settings (which sets Reply URL as seldon-
request-logger in the logger’s default namespace - change if you modified this at install time) and storage URI as
follows:

gs://seldon-models/alibi-detect/od/OutlierVAE/cifar10

5.2.6.3 Make Predictions

Run a single prediction using the tensorflow payload format of an image truck. Also a perturbed image of the truck
in the same format at outlier truck image. Make a couple of these requests at random using the predict tool
in the UI.

5.2.6.4 View outliers on the Requests Screen

Go to the requests screen to view all the historical requests. You can see the outlier value on each instance. Also you
can highlight outliers based on this score and also use the filter to see only the outliers as needed.

5.2.6.5 Monitor outliers on the Monitor Screen

Under the ‘Monitor’ section you can see a timeline of outlier requests.

5.2.7 Drift Detection with CIFAR10 Image Classifier

This demo is based on model distiliation drift detector in the alibi detect project.

The idea is that input data can change over time and become significantly different from the model training data. When
the input data distribution shifts then prediction quality can drop. We want to know when that happens.

Here we will :

• Launch an image classifier model trianed on the CIFAR10 dataset.

• Setup a drift detector for this particular model.

• Send a request to get a image classification.

138 Chapter 5. Demos

https://docs.seldon.io/projects/alibi-detect/en/stable/examples/cd_distillation_cifar10.html
https://www.cs.toronto.edu/~kriz/cifar.html

Seldon Deploy

• Send a request to trigger a drift detection.

• View the drift in the dashboard.

Important: This demo requires Knative installation on the cluster as the outlier detector will be installed as a kservice.

5.2.7.1 Create A Model

Note

1. Verify the namespace you will be deploying to.

2. Deployment names must be unique and only contain alphanumeric characters.

From the deployment overview screen, click on the Create button to create a new deployment.

1. In the deployment creation wizard, enter a name for your new deployment.

2. Select the namespace you would like the deployment to reside in (e.g. seldon).

3. From the protocol dropdown menu, select Tensorflow and click next.

4. For the deployment details, enter the following values, then click next:

• Runtime: Tensorflow

• Model URI:

gs://seldon-models/tfserving/cifar10/resnet32

5. Skip the remaining steps, then click Launch.

5.2.7.2 Add A Drift Detector

Note

1. Make sure you are in the correct namespace.

2. By default, the Reply URL is set as seldon-request-logger in the logger’s default names-
pace. If you are using a custom installation, please change this parameter according to your
installation.

3. Increase this value to make the drift detector less sensitive.

From the deployment overview page, select your cifar10 deployment to enter the deployment dashboard.

Inside the deployment dashboard, add a drift detector with by clicking the Create button within the Drift
Detection widget.

Enter the following parameters in the modal popup which appears, using the default settings:

• Model Name: cifar10.

• Model URI:

gs://seldon-models/alibi-detect/cd/ks/cifar10-0_4_4

• Reply URL:

5.2. KFServing Demos 139

Seldon Deploy

http://seldon-request-logger.seldon-logs

• Batch Size: 2.

• Protocol: Tensorflow.

• HTTP Port: 8080.

Then, click Create Drift-Detector to complete the setup.

5.2.7.3 Make Predictions

1. From the deployment dashboard, click on make new prediction.

2. Run a single prediction using the tensorflow payload format of an image truck.

Next, run a single prediction using the tensorflow payload format of an image of an outlier truck image.

5.2.7.4 Monitor Drift On The Monitor Screen

Under the ‘Monitor’ section of your deployment, you can see a timeline of drift requests.

This becomes clearer if you make many requests over a period of time.

5.2.8 Distributions Monitoring

This demo uses a model trained to predict high or low income based on demographic features from a 1996 US census.
In this demo we will observe the predictions and feature distributions of live predictions made using this model with
the following steps:

• Register an income classifier model with the relevant predictions schema

• Launch a KFServing deployment with the income classifier model

• Make predictions using a REST requests to the model deployment

• Observe the feature distributions of the live predictions

• Filter distributions by time or predictions and feature level filters

Note: This demo needs the request logger to connect to Seldon Deploy in order to fetch model level predictions
schema. And this requires specific request logger configuration. Also this feature is supported with many protocols
available with deployments like seldon, tensorflow and the kfserving v2 protocol. But not supported for json data,
string data, bytes payload or multi-node graph use cases yet.

140 Chapter 5. Demos

https://archive.ics.uci.edu/ml/datasets/census+income
../../../getting-started/production-installation/request-logging.html#using-deploy-metadata-auth-from-request-logger-to-deploy

Seldon Deploy

5.2.8.1 Register a income classifer model

Register the income classifier SKLearn model with the below URI.

gs://seldon-models/sklearn/income/model

5.2.8.2 Configure predictions schema

Edit the model metadata to update the predictions schema for the model. The predictions schema is a generic schema
structure for machine learning model predictions. It is a definition of feature inputs and output targets from the model
prediction. Use the income classifier model predictions schema to edit and save the model level
metadata. Learn more about the predictions schema at the ML Predictions Schema open source repository.

5.2.8.3 Launch a KFServing deployment

Deploy the income classifier model from the catalogue into an appropriate namespace.

5.2.8.4 Make predictions using the model deployment

Model predictions can be made in the appropriate protocol. In this demo, we will run several single predictions payload
examples below:

{ "instances": [[39, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]] }
{ "instances": [[50, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]] }
{ "instances": [[23, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]] }
{ "instances": [[21, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]] }
{ "instances": [[25, 7, 1, 1, 1, 1, 4, 1, 2174, 0, 40, 9]] }

Distributions monitoring is especially useful to keep track of predictions when a model makes thousands of predictions
in real world scenario. To simulate such a use case, make multiple predictions over time in the Seldon protocol
request format using the predictions data csv file and the following shell script which makes around
32560 predictions with an interval of 5 seconds between each request. Note that you
need sufficient payload logging infra needed for this.

CLUSTER_IP=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.
→˓status.loadBalancer.ingress[0].ip}')
SERVICE_HOSTNAME=$(kubectl -n seldon get inferenceservice kf-income-classifier -o
→˓jsonpath='{.status.url}' | cut -d "/" -f 3)
DEPLOYMENT_NAME=kf-income-classifier
INTERVAL_SECONDS=5

while IFS= read -r line; do
curl -k -H "Content-Type: application/json" -H "Host: ${SERVICE_HOSTNAME}" \

http://$CLUSTER_IP/v1/models/$DEPLOYMENT_NAME:predict \
-d '{ "instances": [['${line// /,}']] }'

sleep "${INTERVAL_SECONDS}s"
done <prediction-data.csv

5.2. KFServing Demos 141

https://github.com/SeldonIO/ml-prediction-schema

Seldon Deploy

5.2.8.5 Observe predictions and feature distributions

Select the income classifier deployment and go to the monitor section to view the predictions and feature distributions.

5.2.8.6 Filter distributions by time or feature level filters

Filter distributions by time or predictions and feature level filters to compare different cohorts and further analysis.
For example lets look at the predictions for all individuals in the Age group 25-45 and see how the average prediction
frequency changes for this cohort.

5.2.8.7 Configuring parameters

Distributions parameters configuration allows you to configure your charts for further analysis. For example let’s
look at at the charts in the Age group and change the Histogram interval to 11 and Number of time
buckets to 30 to see.

142 Chapter 5. Demos

CHAPTER

SIX

ARCHITECTURE

Overview of the technical architecture

Seldon Deploy is made up of several interacting components that the application uses. The core design is illustrated
in the diagram below.

Seldon Deploy manages the running of our open source core components Seldon Core, KFServing, and Seldon Alibi.
It also manages a range of over components to provide a full machine learning deployment platform.

The following sections will discuss the core parts of the architecture.

143

Seldon Deploy

6.1 Authentication

User Authentication

Currently, Seldon Deploy SSO can be configured in two ways.

• kubeflow cluster

• app-level authentication

6.1.1 App-level Auth

App-level auth is where a request to Seldon Deploy is checked for an auth token and if that is missing then Deploy
redirects to the auth system.

Deploy uses OIDC and can be integrated to OIDC auth systems.

6.1.2 Kubeflow Gateway Auth

In the kubeflow architecture the auth is done at gateway level, before reaching Deploy or any other apps specifically:

This ‘existing_arrikto’ architecture uses an istio envoy filter to run all requests through a check for an auth token,
performed by the OIDC AuthService. If no token is available then the user is sent to dex to login and obtain a token.

LDAP, or another external identity provider, can be used as per the existing_arrikto example and in line with the dex
documentation.

In order to enforce restrictions, namespaces for Seldon Deploy are labelled as restricted or unrestricted and with the
operations that groups can perform on them. See Deployments by Namespace under the Product Tour
heading.

6.2 Authorization

User Authorization

Once a user is authenticated their requests can be authorized based on their permissions. The user information from
the OIDC token is used to identify the user by their ID and the groups they belong to. Permissions can be defined both
on user and on group level.

Resources in Deploy are grouped into two categories:

• Namespace based resources - these are resources that belong to a specific Kubernetes namespace. This includes
all Seldon Deployments and Inference Services running in Deploy. All endpoints and UI actions that read or
modify a namespaced resource can be authorized based on the permission of the user to that namespace.

• Project based resources - these are the models stored in the Model Catalog and deployments using these models.

Currently, there are two ways of defining permissions on the various resources served by Seldon Deploy.

144 Chapter 6. Architecture

https://www.kubeflow.org/docs/aws/authentication/

Seldon Deploy

6.2.1 Kubernetes Namespace Labels

As described on the namespace visibility page, a Kubernetes namespace can be labelled to denote who has access to
it. Seldon Deploy will check if the user requesting a namespaced resource is given the required permissions by the
namespace labels before serving the request.

Namespace labels are used only for authorizing requests to namespace based resources. For a more complete autho-
rization solution, check the Open Policy Agent policies.

6.2.2 Open Policy Agent policies

Seldon Deploy can use Open Policy Agent (OPA) policies to determine if a user has access to a resource. OPA is
popular open-source technology for defining flexible cloud-native policies. To enable it follow the installation guide.
This is an experimental feature.

OPA policies can be used to authorize both namespace based resources and project based resources.

OPA policies will become the primary way of authorization in future releases. We are working on improving the
support and functionality around IAM. If you have any feedback please reach out to your Seldon representative.

6.3 Explainers

Machine Learning Model Explanation

Seldon uses its Open Source Alibi Model Explanation library to provide model explanation. The library provides a
wide range of techniques which will be integrated and optimized for usage in Seldon Deploy.

6.4 Gateways

Seldon Core and KFServing both have features for traffic-splitting. For this they rely on a Gateway.

Currently Seldon Core supports Istio or Ambassador. KFServing currently only supports Istio.

Detector components and KFServing both also use Knative. That requires one of requires one of Ambassador, Contour,
Gloo, Istio, Kong or Kourier

Seldon Deploy itself does not have a hard dependency on Istio. It has dependencies on components that use Istio.

Seldon Deploy can be used to make predict calls to models. The gateway affects the form of the urls to the models.
However, this is configurable in the Seldon Deploy values file using templating to set the form of the url from relevant
parameters. It defaults to Istio.

The key issues to consult on the upstream projects are the below - the Knative one at the top explains the situation
well:

https://github.com/knative/serving/issues/10417 https://github.com/SeldonIO/seldon-core/issues/2988 https://github.
com/SeldonIO/seldon-core/issues/416 https://github.com/SeldonIO/seldon-core/issues/1129

Please comment on the above or otherwise contact Seldon if this is of interest.

6.3. Explainers 145

../../operations/namespace-filtering/index.html#using-namespace-labels
https://openpolicyagent.org/
../../operations/namespace-filtering/index.html#using-open-policy-agent-policies
https://github.com/SeldonIO/alibi
https://knative.dev/v0.20-docs/install/any-kubernetes-cluster/
https://knative.dev/v0.20-docs/install/any-kubernetes-cluster/
https://github.com/knative/serving/issues/10417
https://github.com/SeldonIO/seldon-core/issues/2988
https://github.com/SeldonIO/seldon-core/issues/416
https://github.com/SeldonIO/seldon-core/issues/416
https://github.com/SeldonIO/seldon-core/issues/1129

Seldon Deploy

6.5 GitOps

Git for Source Control

Seldon Deploy will scan namespaces and recognise some namespaces, those with a seldon.gitops: enabled
label, as GitOps namespaces. If the GitOps label is not present or disabled then new deployments and modifications
in the namespace will be pushed directly to the kubernetes cluster.

When GitOps is in place it is recommended to have a GitOps tool syncing a namespace to a directory in a git repo.
The install has an example setup for argocd.

GitOps responsiveness improves if webhooks are configured. One webhook should be configured to notify the GitOps
tool (e.g. argocd) so that it can update the cluster on changes as quickly as possible. Another should be configured to
inform Seldon Deploy of any changes to the repository.

6.6 Kubeflow

End to End Machine Learning on Kubernetes

We integrate with the Kubeflow project to allow end to end machine learning.

• Utilise Seldon and KFServing products from kubeflow.

• Integrate deployment into Kubeflow Pipelines.

6.7 Model Metadata Store

Storage, APIs, and UI for managing model metadata

Seldon Deploy provides a storage solution for model’s metadata since v1.2. It allows model information to be stored
and referenced in Seldon Deploy.

The model metadata is stored in Postgres, which can be part of the Kubernetes cluster, or a managed solution. For
more information on how to setup the Postgres configuration in Seldon Deploy see the instructions.

Seldon Deploy watches for changes to the cluster and keeps track of what models are used in what deployments. You
can access this data from the API using the /api/v1alpha1/model/metadata/runtime. In future releases
we will make this information available through the UI as well allowing filtering deployments by model metadata.

Seldon Deploy also prepopulates basic model information for all models already running in the cluster that are not yet
registered in the Model Store.

6.7.1 Querying model metadata

6.7.1.1 Making queries

Seldon Deploy provides an advanced query language that allows you to make sophisticated search queries over your
models.

Fields can be compared using the following operators: =, !=, >=, <=, <, >, and multiple queries can be
combined using AND, OR.

For example you can search for all models with the name iris and version 2.0 with a query like this:

name=iris AND version=2.0

146 Chapter 6. Architecture

https://www.kubeflow.org/

Seldon Deploy

More advanced queries can be built up using bracketed expressions:

(name=iris AND version=2.0) OR version=3.0

Note that since the version field is a string, the >=, <=, <, > operators are alphabetical comparisons, not
numeric ones.

6.7.1.2 Querying for tags and metrics

You can query for models that have specific metrics or tags by using the following syntax:

metrics[metricName]>1.0 AND tags[tagKey]!=someValue

6.7.1.3 Queries using the API

Using the model metadata API you can specify a string query (the same way you would in the UI) which takes
precedence over other fields set in the API.

<yourSeldonDomain>/seldon-deploy/api/v1alpha1/model/metadata?query=(version=1.
0)

6.7.1.4 Valid query field names and values

Field
Names

Valid Values

URI string
Name string
Version string
Project string
Arti-
fact_type

one of CUSTOM, TENSORFLOW, SKLEARN, XGBOOST, MLFLOW, PYTORCH, ONNX,
TENSORRT

Task_type string
Tags tags[tag_name]=tag_value (string data)
Metrics metrics[metric_name]=metric_value (numeric data)

Note that the field names are case insensitive.

6.8 Monitoring

Real time observability for ML models

Seldon Core and KFServing both provide out of the box grafana dashboards for monitoring. These include metrics
on requests, feedback on predictions and request latency. The dashboards can be used to compare different versions
of a model between which traffic is being split, such as a main model running alongside a canary version. These
dashboards are integrated into the Seldon Deploy user interface and are accessed behind the same authentication as
the rest of Seldon Deploy. By default this is achieved by exposing a single, secured istio ingress gateway and creating
VirtualServices for each component (other configurations would also be possible).

Detailed demos showing monitoring are available in the Demos section of this documentation.

6.8. Monitoring 147

Seldon Deploy

6.9 Request Logging

Log prediction requests and responses for analysis

In Seldon Core request logging is initiated by the seldon container engine. It sends a request-response pair to a knative
broker (part of knative eventing) so that it can be processed asynchronously.

The knative broker has a listening trigger which can bring up a request logger. By default the request logger logs to
stdout for fluentd to collect and send to elasticsearch, which is the primary backend integration:

The request logger component labels requests to distinguish text, tabular and image data. It also splits out batch
requests so that they are individually logged. This allows requests to be displayed in the UI and selected for running
explanations.

Request logging for KFServices is being tracked in github

148 Chapter 6. Architecture

https://github.com/SeldonIO/seldon-core/tree/master/examples/centralised-logging#setting-up-request-logging
https://github.com/kubeflow/kfserving/issues/201

Seldon Deploy

6.10 Serving Solutions

We support the following serving technologies

6.10.1 Seldon Core

Seldon Core can be installed via a helm chart, kustomize or as part of kubeflow. For full use of Seldon Deploy features
it should be installed with istio routing and request logging enabled.

SeldonDeployment custom resources are managed by the seldon core operator, typicall installed in the seldon-system
namespace.

When a SeldonDeployment is deployed the operator creates the necessary Kubernetes pods. One of these pods will
contain the seldon-container-engine, which reads the inference graph and orchestrates the HTTP calls to follow the
sequence of the graph components.

Monitoring is via seldon-core-analytics, which is a grafana install that comes with OOTB dashboards.

Details on the request logging stack can be found in the Request Logging section.

6.10.2 KFServing

KFServices are handled by the KFServing operator. This controller-manager is installed by default in the kubeflow
namespace as part of a kubeflow install.

Services are implemeted as knative services using knative serving. Monitoring is via the knative-monitoring stack.

Inference graphs are not currently part of KFServing but see the project roadmap

6.10. Serving Solutions 149

https://docs.seldon.io/en/latest/
https://github.com/kubeflow/kfserving
https://knative.dev/docs/serving/
https://knative.dev/docs/serving/
https://github.com/kubeflow/kfserving/blob/master/ROADMAP.md

Seldon Deploy

150 Chapter 6. Architecture

CHAPTER

SEVEN

OPERATIONS

Operating Seldon Deploy in your cluster

These pages go into detail on best practices for operators or admins managing a Seldon Deploy cluster.

7.1 App Analytics

Seldon Deploy has built-in app analytics, which help to improve the product. These analytics focus on tracking certain
events that get triggered from the UI (e.g. user login).

Note: All events share a distinct_id attribute. This attribute is linked to the IP address, so that each IP address
is identified as a unique user.

7.1.1 Disable app analytics

You can disable the app analytics through the enableAppAnalytics variable of the Seldon Deploy Helm chart.
To disable it just add the following to your Helm variables:

boolean to enable app-analytics (defaults to "true")
enableAppAnalytics: false

7.1.2 Events tracked

Name Trigger Attributes
user_login Show homepage after logging in User login attributes

151

Seldon Deploy

7.1.2.1 User login attributes

Property Example Value Notes
BuildTime Wed Apr 22 15:59:09 UTC 2020

BuildVersion 0.6.0

GitBranch master

GitCommit 5ad34e2b556732213873ee6875f2f99d20a471ee

GitStatus dirty

ReleaseType Early-Access

distinct_id ABABABABABABBABAB Linked to IP address

7.2 Deployment Models

Deployment models for Seldon Deploy

When it comes to deploying Seldon Deploy for a production workload, there are different deployment models that can
apply depending on your use case. For example, you can consider the following questions:

• Do you want to support multiple environments (e.g. production, staging, etc.)? Will these be split across
multiple clusters? Or across different namespaces?

• Are you planning on supporting multiple tenants in your infrastructure? How will you manage permissions for
each one of them?

This section will showcase some of the most common deployment models to set up Seldon Deploy in your cluster.

7.2.1 Multiple environments

When you are managing machine learning models, a common use case is to test them first on some kind of test
environment, isolated from production workloads. These test environments are usually known as staging, qa,
pre-prod, etc.

In some cases, these environments will form a deployment (or continuous delivery) pipeline, where each environment
is considered more stable than the previous one:

Dev > ... > Staging > Production

Seldon Deploy allows you to have multiple environments by separating them as namespaces or clusters.

Note: Regardless of the approach you choose, this doesn’t restrict your options when it comes to syncing your models
with a GitOps repository. In fact, you can still have:

• Single GitOps repository, with one folder per environment.

• Multiple GitOps repositories, with one repository per environment.

• . . .

152 Chapter 7. Operations

Seldon Deploy

7.2.1.1 Namespace environments

The official Kubernetes docs define namespaces as virtual clusters. Therefore, it makes sense to treat each separate
environment as a separate namespace. Following the example above, that would mean creating a dev, staging and
production namespaces.

By default, Seldon Deploy will treat each namespace as a separate environment. Therefore, this is the suggested
approach.

Out of the box, this gives you easy control over:

• Where is each model deployed (on which environments).

• Who is authorised to view or create models.

• Visibility over all your models across every environment from a single instance of Seldon Deploy.

7.2.1.2 Cluster environments

When you are dealing with multiple environments, it makes sense to keep them completely isolated of each other.
That way, any cluster-wide effects will only affect one of them.

Using separate Kubernetes clusters for each of your environments allows you to achieve a higher-level of separation
than namespaces. However, this separation also comes with a few caveats:

• All your infrastructure resources will need to be duplicated and managed across every environment (e.g. auth,
ingress, logging, metrics, . . .).

• Operations spanning multiple environments become more complicated (e.g. promotion of models between
different environments).

This approach is usually recommended to test new versions of cluster-wide components at the infrastructure level. For
example, a new version of Seldon Deploy or a new ingress system. However, due to the caveats listed above, we don’t
suggest this approach to segregate different versions of your models.

Having said so, you can still leverage the GitOps paradigm to communicate between different clusters.

7.3 GitOps Sync

Deployment source control and syncing with Gitops

Seldon Deploy can recognise that certain namespaces are to be maintained using GitOps. It will look for the label
seldon.gitops: enabled.

If the gitops label is not present or disabled then new deployments and modifications in the namespace will be pushed
directly to the kubernetes cluster.

If the gitops label is present then deploy will look for an annotation named git-repo and a git URI. It uses a service
account token for accessing the repo which is stored in a Secret installed with Seldon Deploy using the helm chart
(along with username and email). Deploy will add metadata to any commits it makes, including recording which dex
user took the action.

Seldon Deploy can display an Audit Log for each deployment where it reads back git commits and makes the
changes and metadata visible:

7.3. GitOps Sync 153

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Seldon Deploy

If the user is permitted then the state can also be restored to a previous commit.

See GitOps under Architecture for more on how GitOps works.

7.4 Kubernetes Resources

Underlying kubernetes resources and debugging

Seldon Deploy allows a view of the underlying kubernetes resources created by the deployed models. This view
displays the pods, deployments and services created for each component of the Seldon Deployment/Inference Service
custom CRDs.

154 Chapter 7. Operations

Seldon Deploy

Also for the pods created for each model component, you can dive into the live container logs and debug relevant
issues if any.

7.4. Kubernetes Resources 155

Seldon Deploy

7.5 LDAP Integration

7.5.1 Integration Options

Seldon Deploy integrates with Single Sign-On (SSO) providers for authentication.

The SSO system may also host the identities, or it may integrate to an IdP. The IdP is often a source of truth for users
across the organisation.

User details can be used for filtering/restricting visibility of namespaces. Filtering is either by user or by group.

In order for group-based filtering to be used, groups need to be available. These come from an IdP but not all IdPs
support groups or support groups in integration to SSO.

Here is a list from the Dex documentation (see their docs for latest):

156 Chapter 7. Operations

https://github.com/dexidp/dex#connectors

Seldon Deploy

7.5. LDAP Integration 157

Seldon Deploy

If groups are to be used, we suggest integrating either keycloak or dex to LDAP. See, for example:

• Keycloak LDAP integration example

• Dex LDAP integration example

Or search the official documentation of those products for the latest details.

7.5.2 Debugging Keycloak/Groups

Keycloak is the most common choice at present for Identity Provider to integration to LDAP.

If configured correctly you should be able to filter namespaces by group permissions)

If you are not sure if groups are coming through, go to the about page in Deploy and see if a group is shown for your
user. Here the group is Data Scientist:

Then open another window and login to keycloak as an admin user. Go to ‘Sessions’:

Click into the Session and click ‘Show Sessions’:

158 Chapter 7. Operations

https://documentation.abas.cloud/en/abas-keycloak/setup-user-federation-ldap.html
https://v1-2-branch.kubeflow.org/docs/started/k8s/kfctl-istio-dex/#log-in-with-ldap--active-directory

Seldon Deploy

Click into that and then go to Groups:

This will tell you whether the Groups are coming through at a Keycloak level.

You can also get the full token from Seldon Deploy. To do this inspect the browser network tab with preserve logs
turned out. Then logout your session. You should see a logout containing the token:

If you put the content of id_token_hint in jwt.io then you can see its contents, including groups.

7.5. LDAP Integration 159

https://jwt.io/

Seldon Deploy

If keycloak has the groups but the token does not then likely the ‘groups’ scope is missing in the OIDC_SCOPES env
var in the Seldon Deploy helm configuration.

Note that there needs to be a client scope in the keycloak admin console for groups and this needs to be mapped to
groups using the group membership mapper type. The scope and token claim name should both be ‘groups’. Disable
‘full group path’.

The groups scope has to be added as a client scope under the keycloak client config for the client used by Seldon
Deploy.

7.6 Namespace Visibility

Deployment filtering by namespace

7.6.1 Visibility Restriction per Namespace

Namespaces that the user is eligible to see appear in a drop-down namespace selector in the top-right:

From there the user can search for or choose to drill into deployments:

160 Chapter 7. Operations

Seldon Deploy

Visibility and permissions on namespaces are driven by labels or by authorization policies.

7.6.2 Using namespace labels

7.6.2.1 Global Visibility

By default Seldon Deploy does not show any namespaces that are not explicitly labelled.

You can make a namespace globally available to all users by providing the following label to the namespace:

seldon.restricted: "true"

This indicates that the namespace is restricted. If the label were seldon.restricted: "false" then the
namespace would be open to everyone. Namespaces without a seldon.restricted label would be ignored.

This can be set with kubectl label namespace $namespace seldon.restricted=false
--overwrite=true, $namespace is the namespace to label.

7.6.2.2 Group Based Visibility Restrictions

For fine-grained restrictions on a group level for namespace access, you can add namespaces with the label in the
format:

seldon.group.{YOUR_GROUP_NAME}: "write"

Some examples of these, which would be linked to your LDAP integration include:

seldon.group.admins: "write"
seldon.group.developers: "read"

This would indicate that members of the admins group could make changes in the namespace and developers can read.
Groups could, for example, come from LDAP. See Authentication under Architecture.

7.6. Namespace Visibility 161

Seldon Deploy

7.6.2.3 User-Based Visibility Restrictions

For fine-grained restrictions on a user level for namespace access, you can add namespaces with the label:

seldon.user.{USERNAME}: "[write/read]"

Some examples of these, which would be linked to your LDAP integration include:

seldon.user.myusername: "write"
seldon.user.anotherusername: "read"

The claim to be used for user-based visibility restriction can be changed by updating the Seldon Deploy helm chart
environment variable USERID_CLAIM_KEY. This value defaults to preferred_username but can be configured
to other user info claim values.

env:
USERID_CLAIM_KEY:"name" # claim to be used as userid (defaults to "preferred_

→˓username")

7.6.3 Using Open Policy Agent policies

With OPA enabled the visibility of namespaces can be controlled via authorization policies.

To understand how the authorization policies work in more detail please see their documentation first.

7.6.3.1 Global Visibility

Making namespaces globally visible is possible by giving read and write permissions to that namespace to all
users (*). An example policy will look like this:

{
"role_grants": {},
"user_grants": {
"*": [
{

"action": "read",
"resource": "namespace/seldon"

},
{

"action": "write",
"resource": "namespace/seldon"

}
]

}
}

This policy file is a bare minimum which will allow all users to see the seldon namespace and operate on resources
in that namespace.

162 Chapter 7. Operations

Seldon Deploy

7.6.3.2 Group Based Visibility Restrictions

To give access to a namespace on a group level, the role_grants policy list can be used. The group list in
the request is obtained from the groups claim in the OIDC authentication token. An example of giving the
data-scientist group access to the prod namespace looks like this:

{
"role_grants": {
"data-scientist": [

{
"action": "read",
"resource": "namespace/prod"

},
{

"action": "write",
"resource": "namespace/prod"

}
]

},
"user_grants": {}

}

7.6.3.3 User-Based Visibility Restrictions

To give access to a namespace on a user level, the user_grants policy list can be used.

The claim to be used for user-based visibility restriction can be changed by updating the Seldon Deploy helm chart
environment variable USERID_CLAIM_KEY. This value defaults to preferred_username but can be configured
to other user info claim values.

env:
USERID_CLAIM_KEY:"name" # claim to be used as userid (defaults to "preferred_

→˓username")

An example of giving the alice user access to the prod namespace looks like this:

{
"role_grants": {},
"user_grants": {
"alice": [

{
"action": "read",
"resource": "namespace/prod"

},
{

"action": "write",
"resource": "namespace/prod"

}
]

}
}

7.6. Namespace Visibility 163

Seldon Deploy

7.7 Namespace Setup

Setting up kubernetes namespaces

Namespaces can have various features. A basic configuration can be done first. This is enough to use many features.
Further features such as gitops can be added later.

7.7.1 Basic Namespace Setup

7.7.1.1 With namespace labels

By default Seldon Deploy does not show any namespaces that are not explicitly labelled.

You can make a namespace globally available to all users by providing the following label to the namespace:

seldon.restricted: "false"

This is the minimum needed to use a namespace.

7.7.1.2 With authorization policies

With OPA enabled you can make namespaces globally visible by giving read and write permissions to that names-
pace to all users (*). An example policy will look like this:

{
"role_grants": {},
"user_grants": {
"*": [
{

"action": "read",
"resource": "namespace/seldon"

},
{

"action": "write",
"resource": "namespace/seldon"

}
]

}
}

This policy file is a bare minimum which will allow all users to see the seldon namespace.

7.7.2 Namespace Filtering

7.7.2.1 With namespace labels

If the label seldon.restricted is set to “true” then visibility of the namespace can be narrowed by group or by
user.

For details of this, see Namespace Visibility

164 Chapter 7. Operations

Seldon Deploy

7.7.2.2 With authorization policies

With OPA enabled non-global namespaces are supported by both group and user based policies.

For details of this, see Namespace Visibility

7.7.3 Batch Jobs Permissions

Batch jobs use argo as a workflow engine. Argo needs a service account in the namespace and this has to be given
permissions to create necessary resources. This is explained in the Argo section

7.7.4 Object Storage Secrets

The Seldon Deploy demos use models hosted in public buckets. To use private buckets, a secret containing environ-
ment variables should be setup in the namespace. An example is provided in the Argo section.

Models should reference the secret in the envFrom section of the wizard.

7.7.5 Gitops

A GitOps setup utilizes argocd to manage namespace contents in git. This requires setup for git, argocd and per-
namespace. Each of these elements is covered in the gitops section

7.7.6 Multi-tenant Permissions (Only Used for Multi-tenant Installations)

In a multi-tenant setup, deploy is not automatically set up with permissions to work with multiple namespaces. Each
namespace then needs further permissions. Details on this are in the multitenant section

7.7.7 Seldon-logs namespace (a special namespace)

The seldon-logs namespace is used for request logging. It is a special namespace and its setup is covered in the request
logging section. It can be setup as a gitops namespace but this is optional. ML models do not go in this namespace.

7.8 Authorization Policies Management

Managing authorization policies when using Open Policy Agent authorization.

Open Policy Agent (OPA) policies is one of the ways of managing authorization in Deploy. To enable it follow the
production installation guide or enable it via the trial install setup.

7.8. Authorization Policies Management 165

../../getting-started/trial-installation/default-trial.html#open-policy-agent-authorization

Seldon Deploy

7.8.1 Policy schema

The OPA policies are a list of resource-action pairs, defined in a JSON files that must be present to Seldon Deploy on
startup. The Helm chart is able to load the file from a config map specified in the installation guide, but any other way
of providing the file will also work.

7.8.1.1 Targets

Seldon Deploy can authorize users based on their groups and their ID. This information is obtained from the OIDC
token fetched during the authentication step.

The claim to be used for user-based authorization can be changed by updating the Seldon Deploy Helm chart envi-
ronment variable USERID_CLAIM_KEY. This value defaults to preferred_username but can be configured to
other user info claim values.

env:
USERID_CLAIM_KEY:"name" # claim to be used as userid (defaults to "preferred_

→˓username")

The base schema of the policy file consists of two fields - role_grants and user_grants mapping the groups
and user IDs respectively:

{
"role_grants": {

// policies based on the user's groups...
},
"user_grants": {

// policies based on the user's ID...
}

}

A special target is the user * which can be used to give global policies. To see how this can be used check the examples
section.

7.8.1.2 Resources

Seldon Deploy serves various resources like ML models and the deployments of these models. Right now these
resources are grouped in two categories:

• Namespace based resources - deployments.

• Project based resources - models.

The actions one can perform on these resources are write and read, where write corresponds to all actions that
modify a resource like crating it, updating it, and deleting it. read corresponds to actions that only inspect the
resource but do not modify it.

A policy resource-action pair looks like this:

{
"action": "read",
"resource": "namespace/seldon"

}

For more details on the specifics of each resource type policies please see the namespace visibility and project visibility
guides.

166 Chapter 7. Operations

Seldon Deploy

7.8.1.3 Examples

A full example of a policy file looks like this:

{
"role_grants": {
"data_scientist": [

{
"action": "read",
"resource": "project/iris"

},
{

"action": "write",
"resource": "project/iris"

},
{

"action": "read",
"resource": "namespace/seldon"

}
],
"ops": [

{
"action": "read",
"resource": "project/iris"

},
{

"action": "read",
"resource": "namespace/seldon"

},
{

"action": "write",
"resource": "namespace/seldon"

}
]

},
"user_grants": {
"*": [
{

"action": "read",
"resource": "project/default"

},
{

"action": "write",
"resource": "project/default"

},
{

"action": "read",
"resource": "namespace/default"

},
{

"action": "write",
"resource": "namespace/default"

}
],
"alice": [

{
"action": "read",
"resource": "namespace/alice"

(continues on next page)

7.8. Authorization Policies Management 167

Seldon Deploy

(continued from previous page)

},
{

"action": "write",
"resource": "namespace/alice"

}
]

}
}

In this example, users part of the data_scientist group will be able to create, modify, and read models from
the iris project, as well as see deployments in the seldon namespace. However, they do not have permissions to
deploy or modify deployments in that namespace. Similarly, users part of the ops group do not have permissions to
modify models in the iris project, but can see these models as well as deploy to the seldon namespace.

The * user grant specifies that all users have read and write permissions on the default project and namespace.
Another example of the user grant is the permissions given to the user alice - no matter their groups, they will have
read and write access to the alice namespace.

7.8.2 Policy evaluation

The final list of policies that a user has is a combination of:

• the policies that they explicitly have from the user_grants policy list.

• the policies given to all users - the policies in the user_grants list for the * user.

• all the policies in the role_grants list associated with groups that the user belongs to.

Right now, negative authorization (denials) is not supported.

7.8.3 Policy operations

The policy file can be modified and stored in various ways. The simplest way to start using OPA policies in Seldon
Deploy is by mounting it from a config map as described in the production installation guide.

To interact with the policy config map there is a utility command line tool that can be downloaded from the
seldon-deploy-resources repo. Once downloaded the correct binary for your architecture you can start using the
policy_client tool. For full documentation of the tool you can run policy_client --help.

Seldon Deploy listens for changes to the policy file and will automatically reload the policies if they change.

7.8.3.1 Migrating from Namespace labels

To migrate from using namespace labels for defining access requirements to a namespace you can use the following
command:

policy_client sync

It will create a config map called seldon-deploy-policies in the seldon-system namespace if one is
not present. The name and namespace are configurable by flags. It will then populate policies corresponding to the
namespace labels in the cluster. The command will not delete any existing policies in the config map.

To confirm the change has been successful you can check the config map by running:

168 Chapter 7. Operations

https://github.com/SeldonIO/seldon-deploy-resources/releases/tag/policy_client_1.3.0

Seldon Deploy

kubectl get cm -nseldon-system seldon-deploy-policies -o jsonpath='{.data.data}' | jq

7.8.3.2 Adding a new policy

To add a new policy you can run:

policy_client addPolicy --resource=namespace/seldon --action=write --target_
→˓users=alice --target_groups=admin

The arguments target_groups and target_users can take multiple entries.

7.8.3.3 Deleting an existing policy

Similarly to adding, to remove an existing policy you can run:

policy_client removePolicy --resource=namespace/seldon --action=write --target_
→˓users=alice --target_groups=admin

7.8.3.4 Limitation

Using a config map for the policy file is flexible and easy to setup. However, it comes with a limitation which is true
for all Kubernetes resources - it is limited to 1MB size since the underlying etcd value limit. If your use case requires
a bigger size for the policy file consider mounting the file from somewhere else like an object store (S3, minio), or a
database. We are working on adding native support for such use cases which should be generally available in future
releases.

7.9 Visibility of projects

Seldon Deploy allows models to be grouped into projects. A project can have multiple models associated with it. It is
possible to make authorization decisions based on the project a model is associated with. This guide details how this
can be done.

7.9.1 Setup

To start using project based authorization, it must be enabled together with OPA auth as per the installation instruc-
tions. To see how the OPA policies for project based resources look like go to the policy section.

7.9.2 Protected resources and policy setup

7.9.2.1 Models

Right now models are the only resources that are explicitly associated with a project. By default, all models that do
not specify a project are assigned to the default project.

It is strongly advised to set up a base policy so that these models are visible to everyone. A section like this in the
policy file will achieve this:

7.9. Visibility of projects 169

https://kubernetes.io/docs/concepts/configuration/configmap/#motivation

Seldon Deploy

{
"role_grants": {},
"user_grants": {
"*": [
{

"action": "read",
"resource": "project/default"

},
{

"action": "write",
"resource": "project/default"

}
]

}
}

If a user has a read permission on a project it means they can read all models associated with that project. However,
they won’t be able to perform actions like updating the model, creating a new model in that project, or deleting a
model from that project, unless they have a write permission on the project as well. These authorization checks are
performed both if interacting directly with the Seldon API, or via the Model Catalog in the UI.

7.9.2.2 Deployments

Since Seldon Deployments and Inference Services reference models themselves, these resources are also protected
by project based policies. It is possible for a deployment to consist of multiple models that can belong to different
projects. A user must have a read permission on all models referenced in a Seldon Deployment or Inference Service
in order to see it. Namespace level authorization is still applied.

To see how Seldon Deployment and Inference Services reference which project a model they reference belongs to see
the next section.

7.9.3 Associating resources in Kubernetes with a project

Neither Seldon Deployments nor Inference Services support the concept of projects natively. Therefore, we are using
annotations on the CRDs to link a model in that resource with its corresponding project.

170 Chapter 7. Operations

Seldon Deploy

7.9.3.1 When deploying through the UI

When modifying Seldon Deployment or an Inference Service through the Deploy UI it will automatically be annotated
with the projects that are referenced in the Model Project field. If none is specified, the default project will be
assumed.

7.9.3.2 When deploying manually (gitops, kubectl, etc.)

If you are manually constructing the yaml/json that you want to be deployed to the Seldon Deploy cluster, you must
annotate the deployments for Deploy to know what project a model refers to. If no annotations are present, the
default project will be assumed. Here is how to annotate a deployment:

Seldon Deployment

Seldon Deployments’ models are annotated on the predictor level. Each predictor in the spec.
predictors field has an annotations field that contains annotations like "project.seldon.io/
$name_of_component_in_graph": "$project_name"". This allows us to specify the models of all
components in a predictor’s deployment graph since the projects can be different.

Here is a simplified example of the spec of a Seldon Deployment with only one single-model predictor:

{
"spec": {
"name": "mock-example",
"predictors": [
{

"name": "default",
"graph": {
"name": "mock-example-container",
"type": "MODEL",
"logger": {

"mode": "all"

(continues on next page)

7.9. Visibility of projects 171

Seldon Deploy

(continued from previous page)

}
},
"componentSpecs": [
{

"spec": {
"containers": [
{
"name": "mock-example-container",
"image": "seldonio/mock_classifier:1.5.0",
"resources": {
"limits": {

"cpu": "1",
"memory": "1Gi",
"nvidia.com/gpu": "0"

},
"requests": {
"cpu": "100m",
"memory": "1Gi",
"nvidia.com/gpu": "0"

}
}

}
]

}
}

],
"replicas": 1,
"annotations": {
"project.seldon.io/mock-example-container": "iris"

},
"engineResources": {},
"svcOrchSpec": {},
"traffic": 100

}
],
"annotations": {

"seldon.io/engine-seldon-log-messages-externally": "true"
},
"protocol": "seldon"

}
}

The only part different from the default Seldon Core spec is the annotations field specifying the project of the
model in mock-example-container node.

Inference Service

Inference Services do not have predictor level annotations, so we use the annotations on the Inference Service level in-
stead. Again, we follow the same pattern as with Seldon Deployments for the annotations. They look like "project.
seldon.io/$name_of_component": "$project_name"". However, the component names are prede-
fined here. The available annotation options are:

• "project.seldon.io/default": "$project_name"" - the default predictor

• "project.seldon.io/default-transformer": "$project_name"" - the transformer of the
default predictor

172 Chapter 7. Operations

Seldon Deploy

• "project.seldon.io/canary": "$project_name"" - the canary predictor

• "project.seldon.io/canary-transformer": "$project_name"" - the transformer of the
canary predictor

A complete example of an inference service with canary and transformers for both the canary and the default predic-
tors:

{
"kind": "InferenceService",
"apiVersion": "serving.kubeflow.org/v1alpha2",
"metadata": {

"name": "mock-example",
"namespace": "seldon",
"resourceVersion": "7249641",
"labels": {

"fluentd": "true"
},
"annotations": {

"project.seldon.io/default": "iris",
"project.seldon.io/default-transformer": "income",
"project.seldon.io/canary": "default",
"project.seldon.io/canary-transformer": "income"

}
},
"spec": {

"default": {
"predictor": {

"custom": {
"container": {

"name": "",
"image": "seldonio/mock_classifier:1.

→˓5.0",
"resources": {

"limits": {
"cpu": "1",
"memory": "2Gi"

},
"requests": {

"cpu": "1",
"memory": "2Gi"

}
}

}
},
"logger": {

"mode": "all"
}

},
"transformer": {

"custom": {
"container": {

"name": "transformer-container",
"image": "seldonio/mock_classifier:1.

→˓5.0",
"resources": {

"limits": {
"cpu": "1",
"memory": "2Gi"

(continues on next page)

7.9. Visibility of projects 173

Seldon Deploy

(continued from previous page)

},
"requests": {

"cpu": "1",
"memory": "2Gi"

}
}

}
}

}
},
"canary": {

"predictor": {
"custom": {

"container": {
"image": "seldonio/mock_classifier:1.

→˓5.0",
"env": []

},
"resources": {

"requests": {
"cpu": "0.1",
"memory": "1Gi",
"nvidia.com/gpu": "0"

},
"limits": {

"cpu": "1",
"memory": "1Gi",
"nvidia.com/gpu": "0"

}
}

},
"logger": {

"mode": "all"
}

},
"transformer": {

"custom": {
"container": {

"name": "transformer-container",
"image": "seldonio/mock_classifier:1.

→˓5.0"
}

}
}

},
"canaryTrafficPercent": 10

},
"status": {}

}

174 Chapter 7. Operations

Seldon Deploy

7.10 Single sign-on (SSO)

Single sign-on (SSO) is a property of identity and access management (IAM) that enables users to securely authenticate
with multiple applications by logging in only once (with just one set of credentials). For SSO, Seldon Deploy relies
on the OIDC protocol that handles authentication through JSON Web Tokens and a central identity provider to verify
user identity.

A typical enterprise SSO flow for web based applications is as follows

As shown in the diagram, Seldon Deploy sso integration works if any enterprise application on domain1.com and a
Seldon Deploy installation on domain2.com is connected to a common auth Server on domain3.com.

Currently, Seldon Deploy SSO can be configured in two ways.

• kubeflow cluster

• app-level authentication

7.10. Single sign-on (SSO) 175

https://www.kubeflow.org/docs/aws/authentication/

Seldon Deploy

7.11 Theme Customization

Seldon Deploy allows customization of the user-interface theme. Seldon Deploy follows Material Design for building
its user experience And most of the theming and design aspects are based on a popular Material design library called
Material UI.

Seldon Deploy supports complete custom configuration the material theme and the Logo image in the UI header.

7.11.1 Customization

1. To get started create a new folder named custom.

2. Create a config.json file in this folder.

3. Add two sections to the config.json file namely logo and theme.

{
"logo":"",
"theme":{}

}

1. The logo section is a sting that represents filename of the new logo Image. Do remember to add the image file ,
in this case custom_logo.png, to the custom folder as well.

2. The theme section is a material-ui theme configuration used to customize the entire UI as needed. For further
options for configuration and customization, refer material ui theming and default theme

3. So a basic theme configuration would look like as follows,

{
"logo": "/custom_logo.png",
"theme": {"palette": {"primary": {"main": "#15425a"}}}

}

7.11.2 Apply custom theme configuration

1. Now that the custom folder is ready, create a kubernetes secret named seldon-deploy-custom-theme
in the seldon-system namespace.

kubectl create secret -n seldon-system generic seldon-deploy-custom-theme --from-
→˓file=./custom

1. The Seldon Deploy pods will automatically use this custom configuration and load appropriately.

176 Chapter 7. Operations

https://material.io/
https://material-ui.com/
https://material-ui.com/customization/default-theme/

Seldon Deploy

7.11.3 Remove custom theme configuration

1. Remove the secret to revert back to default configuration

kubectl delete secret -n seldon-system seldon-deploy-custom-theme

7.12 Usage Monitoring

Summary metrics are available showing usage over time. These can be accessed from ‘Usage’ on the top-right menu.

These metrics differ from those shown for individual models on their pages. The summary metrics show multiple
models for a namespace or cluster.

By default if the cluster-level is chosen then all models are counted for all namespaces. If you wish to restrict to
namespaces visible to the user, set the FILTER_USAGE_MON_NAMESPACES environment variable to true.

Resources are shown broken down by model. The type of resource of interest can be chosen. The containers resource
is shown with a comparison against what your license allows for.

Models are stacked on top of each other in the breakdown when there are multiple

7.12. Usage Monitoring 177

Seldon Deploy

178 Chapter 7. Operations

CHAPTER

EIGHT

UPGRADING

Upgrading Seldon Deploy

8.1 Upgrading to 1.3.0

• Seldon Core v1.8.0 changed the default storage initializer to be seldonio/
rclone-storage-initializer. The secret format that holds credentials have changed and requires
update.

– If you do not wish to update them now, please, set following value in core-values.yaml used when
installing Seldon Core with Helm

storageInitializer:
image: gcr.io/kfserving/storage-initializer:v0.4.0

This is documented in kfserving storage initializer documentation.

– Following resources are available to help you upgrade to the rclone-compatible secret format:

* Seldon Core 1.8 upgrading documentation

* Handling Credentials documentation for pre-packaged model servers with rclone-based storage ini-
tializer

* Tutorial on how to test new secret format without setting rclone-based storage initializer globally

* An example upgrade path that illustrates steps required to smoothly upgrade AWS S3 / MinIO config-
ured clusters from kfserving-based Secret and Service Account credentials to the new format.

• SD 1.3.0 introduces improvement to the Batch Processing of requests - generated Argo workflows now use
storage initializer mechanism for pulling in input file and uploading output file. The default storage initializer is
seldonio/rclone-storage-initializer which requires adjustment of credential secret.

– If you do want to keep using current format of secret without updating it now, set following value in
deploy-values.yaml used when installing Seldon Deploy with Helm

batchjobs:
storageInitializer:
image: gcr.io/kfserving/storage-initializer:v0.4.0

– To upgrade to the new format see links provided in the previous point. Also consult our documentation
that contains example for MinIO-compatible secret.

• SD 1.3.0 updates the request logger component’s image in the helm chart default values file to seldonio/
seldon-request-logger:1.9.1. This version of request logger looks up model level metadata from
Seldon Deploy Metadata service before creating predictions logging elasticsearch indexes. This feature is

179

https://docs.seldon.io/projects/seldon-core/en/latest/servers/kfserving-storage-initializer.html
https://docs.seldon.io/projects/seldon-core/en/latest/reference/upgrading.html#upgrading-to-1-8
https://docs.seldon.io/projects/seldon-core/en/latest/servers/overview.html#handling-credentials
https://docs.seldon.io/projects/seldon-core/en/latest/examples/rclone-upgrade.html
https://docs.seldon.io/projects/seldon-core/en/latest/examples/global-rclone-upgrade.html
../getting-started/production-installation/argo.html#rclone-based-storage-initializer-default

Seldon Deploy

leveraged by new advanced monitoring features like distributions monitoring introduced in this SD version.
Although, it is not a mandatory configuration and it is possible disable the metadata lookup from the request
logger. New features like distributions monitoring will still work, you just won’t be able to enrich logged
predictions with the model level predictions schema (e.g. feature category names).

– As mentioned earlier, metadata lookup is not mandatory for the request logger. If you wish to disable
this feature and would prefer the request logger to create the elasticsearch indexes without the model level
metadata as in previous releases, follow the steps below.

* If you have already enabled model level metadata feature from version v1.2.0 and want to continue
using this feature without the request logger connection to Seldon Deploy, then use the default helm
chart values in the request logger section

* Alternatively, if you have disabled model level metadata feature by setting the metadata.pg.
enabled to false also disables the request logger connection to Seldon Deploy as the model level
metadata is not being stored.

– To enable this metadata lookup feature, the request logger requires authentication configuration to connect
with a Seldon Deploy instance. For configuring this feature, see the request logger page for details of the
authentication setup needed to connect to Seldon Deploy. If you are using model metadata then adding
auth from the request logger to Deploy enables the prediction schema for a model to be found and used
to enrich prediction data and enrich monitoring. This will be enabled for all new elasticsearch logging
indexes once setup. Existing indexes will work as before but will need to be reindexed to store additional
enriched info. Enabling auth from request logger to Deploy currently requires a client credentials auth
flow but can also be configured to work with the password grant flow if needed.

8.2 Upgrading to 1.2.0

• 1.2.0 introduces the Model Metadata storage to Seldon Deploy. To enable/disable the model metadata storage
functionality with all required prerequisites follow the instructions. The quick overview of the changes is:

– If you do not want the model metadata functionality disable it by setting metadata.pg.enabled in
the Seldon Deploy helm chart to false. Not recommended since all model metadata related features will
be unavailable.

– Install a self-hosted or managed PostgreSQL solution (instructions).

– Configure the connection details to the PostgreSQL instance by adding a metadata-postgres secret
in the Seldon Deploy namespace (instructions).

– Enable the model metadata storage by setting metadata.pg.enabled in the Seldon Deploy helm
chart to true (instructions).

• Detector components for outlier detection, drift detection and metrics are now moving out of the
seldon-logs namespace and into the user namespaces. To handle this

– The easiest way to migrate is to delete any existing detectors from the UI and recreate them after upgrade.

– To see what detectors you have, do kubectl get ksvc -n seldon-logs. Also check kubectl
get trigger -n seldon-logs.

– Detectors will have -outlier, -drift or -metrics in their names. Each will have a ksvc and a
corresponding trigger. The name and namespace of the model they are for will also be in the name.

– If you find any issues while carrying out this process, please contact Seldon.

• The ElasticSearch integration will now enable basic authentication by default.

– This is controlled by the elasticsearch.basicAuth flag in the Seldon Deploy Helm chart.

180 Chapter 8. Upgrading

../getting-started/production-installation/request-logging.html#using-deploy-metadata-auth-from-request-logger-to-deploy
../getting-started/production-installation/postgres.html#installation
../getting-started/production-installation/postgres.html#seldon-deploy-configuration
../getting-started/production-installation/postgres.html#seldon-deploy-configuration

Seldon Deploy

– To disable it (and revert to the default behaviour of <= 1.1.0), you can set its value as
elasticsearch.basicAuth=false.

– To keep it enabled and configure ElasticSearch’s user / password credentials, please check the Elastic-
Search integration setup guide.

• The Seldon Core version is now 1.9.1. See the Getting Started > Production Installation
section for installation. A helm upgrade --install can be used to upgrade.

• The demo drift detector has changed from gs://seldon-models/alibi-detect/cd/ks/
cifar10-0_4_3 to gs://seldon-models/alibi-detect/cd/ks/cifar10-0_4_4. This
is because the alibi version in Seldon Core is upgraded.

8.3 Upgrading to 1.1.0

• The helm values file now has an option to set user and password for basic auth to Elastic. For more information,
see the request logger documentation.

• The recommended prometheus settings have now changed to improve performance. We suggest uninstalling the
prometheus helm chart and installing with the below changes.

– See the metrics page for the full helm values.

– The parts that have changed are:

* prometheus.server.livenessProbePeriodSeconds is now 30

* prometheus.server.extraArgs has been added with entries query.
max-concurrency: 400 and storage.remote.read-concurrent-limit: 30

* prometheus.server.resources.limits now has cpu: 2 and memory: 4Gi

* prometheus.server.resources.requests now has cpu: 800m and memory: 1Gi

– Remove analytics with helm delete -n seldon-system seldon-core-analytics.

– Install again using the instructions

• The recommended Seldon Deploy helm values have changed slightly to improve performance. Set the following:

– resources.limits should now have cpu: 800m and memory: 800Mi

• A further change to the Seldon Deploy helm values is the addition of a configuration for the runAsUser for
knative pods started by Deploy:

defaultUserID: "8888"

8.4 Upgrading to 1.0.0

• If you are upgrading by more than one version, please see previous notes.

• The self-install trial customers, the file dockercreds.txt is now called sdconfig.txt (anyone using
Product Installation can ignore this).

– The variable KUBEFLOW_USER_EMAIL has become SD_USER_EMAIL and KUBEFLOW_PASSWORD
has become SD_PASSWORD

• New components have been introduced for Batch support. Argo and minio. See Getting Started >
Production Installation

8.3. Upgrading to 1.1.0 181

Seldon Deploy

– Note the new Batch component requires per-namespace config for any Batch-enabled namespaces. See
Getting Started > Production Installation section on Argo and refer to references to .

• For upgrading Seldon Deploy specifically

– The requestLogger.image in the helm values file is now docker.io/seldonio/
seldon-request-logger:1.5.0

– The alibidetect.image in the helm values is now seldonio/alibi-detect-server:1.5.
0.

– There’s a new entry in the batchjobs section of the helm values - serviceAccount:
"workflow"

– The Seldon Core version is now 1.5.0. See the Getting Started > Production
Installation section for installation.

– The KFServing version is 0.4.1.

8.5 Upgrading to 0.9.0

• Seldon Deploy 0.9.0 uses knative 0.18. To upgrade this, see the Upgrading Knative section.

• For upgrading Seldon Deploy specifically

– A license is required at app install/startup time. Contact Seldon for a license.

– Seldon Core Analytics or Prometheus needs to be upgraded. Prometheus recording rules have been intro-
duced. See Getting Started > Production Installation > Metrics Monitoring

– If Seldon Core Analytics is used, upgrade with using seldon-deploy-install/
prerequisites-setup/prometheus/seldon-core-analytics.sh from the scripts
extracted in Getting Started > Download Installation Resources.

– Upgrading Seldon Core Analytics will reset prometheus data.

– The requestLogger.image in the helm values file is now docker.io/seldonio/
seldon-request-logger:1.3.0-json

– The requestLogger.trigger in the helm values now has apiVersion “eventing.knative.dev/v1”
and broker “default”.

– The alibidetect.image in the helm values is now seldonio/alibi-detect-server:1.4.
0.

– There is a new batchjobs section in the helm values.

8.6 Upgrading to 0.8.2

• In installations that have restricted external access (eg. air gapped), the following image will need to be down-
loaded:

– docker.io/seldonio/seldon-request-logger:1.3.0-json

182 Chapter 8. Upgrading

http://docker.io/seldonio/seldon-request-logger:1.3.0-json

Seldon Deploy

8.7 Upgrading to 0.8.0

• The sd-install script is now called sd-install-default. Or for a kubeflow install there’s sd-install-kubeflow.

• The helm values file now has a single gitops section. This involves the following changes.

– The recommended way to configure git credentials is in a git secret, though a token parameter to the chart
can still be used.

– The sd-install-default script contains an example of this. It is:

kubectl create secret generic git-creds -n seldon-system --from-file ~/.ssh/id_rsa --
→˓from-file ~/.ssh/known_hosts --from-literal=passphrase="$GIT_SSHKEY_PASSPHRASE" --
→˓from-literal=username="$GIT_USER" --from-literal=token="$GIT_TOKEN" --from-
→˓literal=email="$GIT_EMAIL" --dry-run -o yaml | kubectl apply -f -

• skipVerifyGit, gitwebhook, GITOPS_FORMAT and argocd config have all moved from github to the new
gitops section in helm values file, see documentation.

• if your ArgoCD Application does not follow naming pattern seldon-gitops-${namespace}, please,
specify the ArgoCD application using namespace labels, see documentation.

• The contents of the helm chart have also changed. In particular:

– The istio virtual service no longer does path rewriting.

– Permission is now required to watch argocd applications.

– The liveness and readiness probes are now on /seldon-deploy/api/status

8.8 Upgrading to 0.7.0

• The Deploy helm chart now contains an option to install a request logger in the seldon-logs namespace. This
is on by default. Previously loggers were per-namespace. To use a single request logger installed through
the chart, ensure the seldon-logs namespace is labelled for knative-evenint and that seldon core is v1.2.1 and
has executor.requestLogger.defaultEndpoint http://default-broker.seldon-logs. For KfServing, if using it, the
default broker will for now continue to be in the current namespace unless set at the point of creating the model
deployment.

• The helm values file has seen some changes.

– There’s now a request logger section for installing the request logger to a dedicated namespace, if desired.

– The istioIngress section has been renamed ingressGateway

– There are extra options in the prometheus section for for using a secured prometheus (assumes not secure
by default, as before).

– There are extra options in the elasticsearch section for for using a secured prometheus (assumes not secure
by default, as before).

8.7. Upgrading to 0.8.0 183

../getting-started/production-installation/gitops.html#git-credentials-configuration
../getting-started/production-installation/gitops.html#seldon-namespace-configuration
http://default-broker.seldon-logs

Seldon Deploy

8.8.1 Upgrading Knative

How to upgrade knative for Seldon Deploy

8.8.1.1 Upgrading to 0.18

Most likely you are currently running 0.11 of knative. We suggest removing and installing a new version.

The official knative docs suggest upgrading versions one by one.

We suggest deleting the existing install and installing a new one in order to save time.

Note that knative serving 0.18 officially requires at least istio 1.4.10 but has been known to work with 1.2.10.

If you do not meet the minimum istio version, consider only upgrading knative eventing. Seldon Deploy can work
with knative serving 0.11. To only upgrade eventing, modify the steps below to remove anything related to serving.

Note that we will delete all existing Triggers and kservices. But if these are just for Seldon Deploy then they can be
recreated.

If you have InferenceServices running then there will be downtime for these resources (their kservices will be removed
and not recreated until patching KFServing). Any outlier detectors should be deleted and recreated afterwards.

First remove Deploy with helm delete -n seldon-system seldon-deploy

To remove knative 0.11 run:

#remove all knative eventing setup from seldon-logs namespace
kubectl label namespace seldon-logs knative-eventing-injection-
kubectl delete -n seldon-logs trigger.eventing.knative.dev/seldon-request-logger-
→˓trigger
kubectl delete broker -n seldon-logs default
kubectl delete -n seldon-logs inmemorychannel.messaging.knative.dev/default-kne-
→˓ingress
kubectl delete -n seldon-logs inmemorychannel.messaging.knative.dev/default-kne-
→˓trigger
kubectl delete -n seldon-logs -l eventing.knative.dev/broker=default
kubectl delete -n seldon-logs subscription.messaging.knative.dev/internal-ingress-
→˓default-db21c71f-6a5f-4216-81b2-bcedfba7d535
kubectl delete -n seldon-logs service.serving.knative.dev/seldon-request-logger

#eventing webhooks
kubectl delete mutatingwebhookconfigurations.admissionregistration.k8s.io
→˓sinkbindings.webhook.sources.knative.dev
kubectl delete mutatingwebhookconfigurations.admissionregistration.k8s.io webhook.
→˓eventing.knative.dev
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io
→˓sinkbindings.webhook.sources.knative.dev
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io config.
→˓webhook.eventing.knative.dev
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io
→˓validation.webhook.eventing.knative.dev

#serving webhooks
kubectl delete mutatingwebhookconfigurations.admissionregistration.k8s.io webhook.
→˓serving.knative.dev
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io config.
→˓webhook.serving.knative.dev
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io
→˓validation.webhook.serving.knative.dev

(continues on next page)

184 Chapter 8. Upgrading

https://knative.dev/v0.15-docs/install/upgrade-installation/
https://knative.dev/docs/install/installing-istio/

Seldon Deploy

(continued from previous page)

kubectl delete --selector knative.dev/crd-install=true \
--filename https://github.com/knative/serving/releases/download/v0.11.1/

→˓serving.yaml \
--filename https://github.com/knative/eventing/releases/download/v0.11.0/

→˓eventing.yaml \
--filename https://github.com/knative/serving/releases/download/v0.11.1/

→˓monitoring.yaml

kubectl delete \
--filename https://github.com/knative/serving/releases/download/v0.11.1/

→˓serving.yaml \
--filename https://github.com/knative/eventing/releases/download/v0.11.0/

→˓eventing.yaml \
--filename https://github.com/knative/serving/releases/download/v0.11.1/

→˓monitoring.yaml

kubectl delete \
---filename https://github.com/knative/eventing/releases/download/v0.11.0/in-

→˓memory-channel.yaml

kubectl delete namespace knative-eventing
kubectl delete namespace knative-serving
kubectl delete namespace knative-monitoring

#ensure knative eventing crds are gone
kubectl delete crd inmemorychannels.messaging.knative.dev
kubectl delete crd brokers.eventing.knative.dev
kubectl delete crd triggers.eventing.knative.dev

Next install knative serving and eventing. We suggest using seldon-deploy-install/
prerequisites-setup/knative/install_knative.sh from the scripts extracted in Getting
Started > Download Installation Resources.

A knative broker has to be created in the seldon-logs namespace. We suggest using
seldon-deploy-install/prerequisites-setup/efk/eventing_for_logs_ns.sh.

Seldon Core and KFServing both need to be patched to point to the new form of knative broker url. We suggest
using seldon-deploy-install/prerequisites-setup/seldon-core/install_seldon_core.
sh and seldon-deploy-install/prerequisites-setup/kfserving/install_kfserving.sh

Seldon Deploy itself can then be upgraded. This will create a new instance of the request logger and its Trigger.

8.8. Upgrading to 0.7.0 185

Seldon Deploy

186 Chapter 8. Upgrading

CHAPTER

NINE

HELP AND SUPPORT

Get help and support for Seldon Deploy

Obtain support to use Seldon Deploy for your enterprise by getting in touch with Seldon.

9.1 Troubleshooting

Seldon Deploy installs into standard kubernetes clusters and can be accessed by all modern browsers mentioned in the
specifications.

Contact the Seldon team with the relevant issue and provide necessary details about your particular install of Seldon
Deploy. The version details can be found at the about page of the tool that can be accessed from the user menu on the
top-right corner.

This about page displays the Seldon Deploy version details, license details and your browser version. For more details
on your specific browser, please visit https://www.whatsmybrowser.org/ and share the URL that can provide us with
more information about your browser usage like resolution and other support needed.

9.1.1 Browser Specifications

We recommend using the latest browser version available to your operating system. See your browser’s documen-
tation to learn more about checking and updating your version. The project supports all modern browsers based on
global usage (> 0.2%). The full list of browser versions supported include stable versions of Chrome, Firefox, Safari,
Microsoft Edge and has a global coverage of 91.09%. The full set is listed here

and_chr 86
and_ff 82
and_uc 12.12
chrome 86
chrome 85
chrome 84
chrome 83
chrome 80
chrome 49
edge 86
edge 85
edge 18
firefox 82

(continues on next page)

187

https://www.seldon.io/
https://www.whatsmybrowser.org/

Seldon Deploy

(continued from previous page)

firefox 81
ios_saf 14
ios_saf 13.4-13.7
ios_saf 13.3
ios_saf 12.2-12.4
ios_saf 10.3
ios_saf 9.3
opera 71
safari 14
safari 13.1
safari 13
samsung 12.0

Important browser settings To log into and edit your site, check if these browser settings are enabled or disabled in
your browser:

• Cookies - Cookies must be enabled in your browser, per our Cookie Policy. Blocking cookies will interfere
with editing your site. JavaScript - JavaScript must be enabled to edit your site. Avoid programs that block
JavaScript, like anti-virus software.

• Browser add-ons or extensions - Browser add-ons might interfere with site editing. While disabling them isn’t
always required, we may ask you to disable them when helping you troubleshoot.

• Browser window sizes Your computer’s screen size determines the maximum browser window resolution. For
the best experience editing your site, use a browser window at least 1280 pixels wide and 768 pixels tall.

9.1.2 Errors from Seldon Deploy

If Seldon Deploy crashes or returns an error the best first steps to get details are:

1. Turn on the network tab in the browser (via right-click and ‘Inspect’ in chrome), hit ‘Preserve Log’ and recreate
the issue. Then find the failed call to see the full message.

2. Find the Seldon Deploy pod (usually in the seldon-system namespace) and inspect its logs.

This should help determine if the cause is Seldon Deploy or another component. If another component, see the other
debugging sections from here. Either way the information obtained will be useful if an issue needs to be reported to
Seldon.

9.1.3 Insufficient ephemeral storage in EKS clusters

When using eksctl, the volume size for each node will be of 20Gb by default. However, with large images this may
not be enough. This is discussed at length on this thread in the eksctl repository.

When this happens, pods usually start to get evicted. If you run kubectl describe on any of these pods, you
should be able to see errors about not enough ephemeral storage. You should also be able to see some
DiskPressure events on the output of kubectl describe nodes.

To fix it, it should be enough to increase the available space. With eksctl, you can do so by tweaking the
nodeGroups config and adding a volumeSize and volumeType keys. For instance, to change the volume
to 100Gb you could do the following in your ClusterConfig spec:

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

...
(continues on next page)

188 Chapter 9. Help and Support

https://github.com/weaveworks/eksctl/issues/780

Seldon Deploy

(continued from previous page)

nodeGroups:
- volumeSize: 100
volumeType: gp2
...

9.1.4 Elastic Queue Capacity

If request logging is used with a high throughput then it’s possible to hit a rejected execution of
processing error in the logger. This comes with a queue capacity message. To address this the
thread_pool.write.queue_size needs to be increased. For example, with the elastic helm chart this could
be:

esConfig:
elasticsearch.yml: |
thread_pool.write.queue_size: 2000

9.1.5 Request Logs Entries Missing

Sometimes requests fail to appear in the request logs. Often this is a problem with the request logger setup. If so see
the request logging docs.

Sometimes we see this error in the request logger logs:

RequestError(400, 'illegal_argument_exception', 'mapper [request.instance] cannot be
→˓changed from type [long] to [float]')

What happens here is elastic has inferred the type of the fields in the request for the model’s index. This is inferred on
the first request and if it changes or is inferred incorrectly this has to be addressed manually.

The best thing to do here is to delete the index.

First port-forward elastic. If the example elastic is used then this is kubectl port-forward -n
seldon-logs svc/elasticsearch-opendistro-es-client-service 9200.

To delete the index we need to know its name. These follow a pattern. The pattern is:

inference-log-<seldon/kfserving>-<namespace>-<modelname>-<endpoint>

Usually endpoint is default unless there’s a canary.

You can also see indexes in kibana (in a trial install on /kibana/) or using the elastic API

Then delete the index with a curl. If the auth is admin/admin and there’s a cifar10 seldon model in a names-
pace also called seldon then it’s curl -k -v -XDELETE https://admin:admin@localhost:9200/
inference-log-seldon-seldon-cifar10-default

9.1. Troubleshooting 189

https://github.com/SeldonIO/seldon-core/tree/master/components/seldon-request-logger
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/cat-indices.html

Seldon Deploy

9.1.6 Request Logs Entries Incorrect

Model names should not overlap as at the time of writing there is a bug with the request log page. Its searches can get
confused between, say, ‘classifier’ and ‘classifier-one’. The logs in the backend are distinct but the searches can get
muddled. This issue is being tracked - for now the workaround is to use distinct names. This affects both viewing the
prediction logs and also the feature distributions monitoring feature. In the distributions monitoring dashboard, this
error may manifest as missing statistics and distribution graphs.

9.1.7 Auth

See the auth section for debugging tips.

9.1.8 Knative

See the knative install section for how verify knative.

9.1.9 Argo and Batch

See the argo section for debugging batch and the minio section for minio.

9.1.10 Prometheus

See the metrics section for debugging prometheus.

9.1.11 Serving Engines

For Seldon Core and for KFServing debugging, it is best to see their respective docs.

In our demos we load models from google storage buckets. In the model logs we sometimes see this:

Compute Engine Metadata server unavailable onattempt

This is a known google storage issue but does not cause failures. Treat as a warning.

190 Chapter 9. Help and Support

https://github.com/googleapis/google-cloud-python/issues/2995

CHAPTER

TEN

ARCHIVE

10.1 Previous versions

• Version 0.8 Documentation

191

https://deploy-v0-8.seldon.io/

	About
	What is Seldon-Deploy?
	Seldon Core
	KFServing
	Alibi
	Audience
	Who should use Seldon Deploy?

	Release Notes
	Seldon Deploy 1.3.0
	What’s New
	Bug fixes

	Seldon Deploy 1.2.1
	Bug fixes

	Seldon Deploy 1.2.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 1.1.2
	Bug fixes

	Seldon Deploy 1.1.0
	What’s New
	Bug fixes

	Seldon Deploy 1.0.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 0.9.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 0.8.2
	Bug fixes

	Seldon Deploy 0.8.1
	What’s New
	Bug fixes

	Seldon Deploy 0.8.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 0.7.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 0.6.2
	Bug fixes

	Seldon Deploy 0.6.1
	Bug fixes

	Seldon Deploy 0.6.0
	Breaking Changes
	What’s New
	Bug fixes

	Seldon Deploy 0.5.2
	Bug fixes

	Getting Started
	Installation Types
	Component integrations
	Pre-requisites
	Cluster Requirements
	Older Kubernetes Versions
	Newer Kubernetes Versions
	References
	Download resources
	Applying a License
	Trial Installation
	Trial Installation Options
	Configuration
	References

	Production Installation
	Components overview
	References

	Multi-tenant Installation
	Multi-tenant Guidance

	OpenShift Installation
	Red Hat Marketplace Installation
	Other OpenShift Installations

	Installation Types
	Trial vs Production Install
	Easiest Ways to Get Started
	What if I also want an ML training platform?
	How to Size a Cluster?

	Product Tour
	Deployment Dashboard
	Request Monitoring
	Distributions Monitoring
	Request Logs
	Requests to Models
	Make a prediction
	Load Test

	Deployment Wizard
	Seldon Deployment Wizard
	Kubeflow Inference Service Wizard

	Model Explanations
	Available Methods
	Tabular Data
	Text Data
	Image Data

	Rollout Strategies
	Canary
	Shadow

	REST API
	Usage
	Authentication
	Versioning
	Reference
	API Reference (v1alpha1)

	Demos
	Seldon Core Demos
	Canary Promotion
	Iris Model
	Deploy Model
	Start Load Test
	Create Canary

	Model Explanations with Anchor Images
	Create Model
	Get Predictions
	Add an Anchor Images Explainer
	Get Explanation for one Request

	Model Explanations with Anchor Tabular
	Create Model
	Get Predictions
	Add an Anchor Tabular Explainer
	Get Explanation for one Request

	Model Explanations with Anchor Text
	Create Model
	Get Predictions
	Add an Anchor Text Explainer
	Get Explanation for one Request

	Model Catalogue
	Registering Models and Editing Metadata
	Register New Model
	Edit Model Metadata

	Outlier Detection with CIFAR10 Image Classifier
	Create Model
	Setup Outlier detector
	Make Predictions
	View outliers on the Requests Screen
	Monitor outliers on the Monitor Screen
	Troubleshooting

	Drift Detection with CIFAR10 Image Classifier
	Create A Model
	Add A Drift Detector
	Make Predictions
	Monitor Drift On The Monitor Screen
	Troubleshooting

	Model Accuracy Metrics with Iris Classifier
	Create Model
	Setup Metrics Server
	Make Predictions
	Send Feedback
	Monitor accuracy metrics on the Monitor Screen
	Submit batch feedback using Batch Processor component
	Troubleshooting

	Batch Requests
	Pre-requisites
	Deploy Model
	Setup Input Data
	Run a Batch Job

	NVIDIA Triton Server and Alibi Explanations
	Deploy an image classifier model
	Make model predictions
	Configure an Alibi Anchor Images Explainer
	Get Explanation for a single prediction

	Kubeflow Example
	Kubeflow Pipeline with Kale example using the Seldon Deploy Enterprise API
	Prerequisites
	GCP Setup
	RBAC Setup
	Pipeline/Notebook Parameters
	Kubeflow Notebook Server
	Test Pipeline
	Tested on

	Distributions Monitoring
	Register a income classifer model
	Configure predictions schema
	Launch a Seldon Core deployment
	Make predictions using the model deployment
	Observe predictions and feature distributions
	Filter distributions by time or feature level filters
	Configuring parameters

	Project based authorization
	Setup
	Confirm policies are working

	KFServing Demos
	Canary Promotion
	Run a Load Test
	Adding a Canary
	Delete the Deployment

	Model Explanations with Anchor Images
	Create Model
	Get Predictions
	Add an Anchor Images Explainer
	Get Explanation for one Request

	Model Explanations with Anchor Tabular
	Create Model
	Get Predictions
	Add an Anchor Tabular Explainer
	Get Explanation for one Request

	Model Explanations with Anchor Text
	Create Model
	Get Predictions
	Add an Anchor Text Explainer
	Get Explanation for one Request

	Model Catalogue
	Registering Models and Editing Metadata
	Register New Model
	Edit Model Metadata

	Outlier Detection with CIFAR10 Image Classifier
	Create Model
	Setup Outlier detector
	Make Predictions
	View outliers on the Requests Screen
	Monitor outliers on the Monitor Screen

	Drift Detection with CIFAR10 Image Classifier
	Create A Model
	Add A Drift Detector
	Make Predictions
	Monitor Drift On The Monitor Screen

	Distributions Monitoring
	Register a income classifer model
	Configure predictions schema
	Launch a KFServing deployment
	Make predictions using the model deployment
	Observe predictions and feature distributions
	Filter distributions by time or feature level filters
	Configuring parameters

	Architecture
	Authentication
	App-level Auth
	Kubeflow Gateway Auth

	Authorization
	Kubernetes Namespace Labels
	Open Policy Agent policies

	Explainers
	Gateways
	GitOps
	Kubeflow
	Model Metadata Store
	Querying model metadata
	Making queries
	Querying for tags and metrics
	Queries using the API
	Valid query field names and values

	Monitoring
	Request Logging
	Serving Solutions
	Seldon Core
	KFServing

	Operations
	App Analytics
	Disable app analytics
	Events tracked
	User login attributes

	Deployment Models
	Multiple environments
	Namespace environments
	Cluster environments

	GitOps Sync
	Kubernetes Resources
	LDAP Integration
	Integration Options
	Debugging Keycloak/Groups

	Namespace Visibility
	Visibility Restriction per Namespace
	Using namespace labels
	Global Visibility
	Group Based Visibility Restrictions
	User-Based Visibility Restrictions

	Using Open Policy Agent policies
	Global Visibility
	Group Based Visibility Restrictions
	User-Based Visibility Restrictions

	Namespace Setup
	Basic Namespace Setup
	With namespace labels
	With authorization policies

	Namespace Filtering
	With namespace labels
	With authorization policies

	Batch Jobs Permissions
	Object Storage Secrets
	Gitops
	Multi-tenant Permissions (Only Used for Multi-tenant Installations)
	Seldon-logs namespace (a special namespace)

	Authorization Policies Management
	Policy schema
	Targets
	Resources
	Examples

	Policy evaluation
	Policy operations
	Migrating from Namespace labels
	Adding a new policy
	Deleting an existing policy
	Limitation

	Visibility of projects
	Setup
	Protected resources and policy setup
	Models
	Deployments

	Associating resources in Kubernetes with a project
	When deploying through the UI
	When deploying manually (gitops, kubectl, etc.)

	Single sign-on (SSO)
	Theme Customization
	Customization
	Apply custom theme configuration
	Remove custom theme configuration

	Usage Monitoring

	Upgrading
	Upgrading to 1.3.0
	Upgrading to 1.2.0
	Upgrading to 1.1.0
	Upgrading to 1.0.0
	Upgrading to 0.9.0
	Upgrading to 0.8.2
	Upgrading to 0.8.0
	Upgrading to 0.7.0
	Upgrading Knative
	Upgrading to 0.18

	Help and Support
	Troubleshooting
	Browser Specifications
	Errors from Seldon Deploy
	Insufficient ephemeral storage in EKS clusters
	Elastic Queue Capacity
	Request Logs Entries Missing
	Request Logs Entries Incorrect
	Auth
	Knative
	Argo and Batch
	Prometheus
	Serving Engines

	Archive
	Previous versions

